Properties

Label 38720bv
Number of curves $2$
Conductor $38720$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 38720bv have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 38720bv do not have complex multiplication.

Modular form 38720.2.a.bv

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{7} - 2 q^{9} + 4 q^{13} - q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 38720bv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
38720.ck1 38720bv1 \([0, 1, 0, -38881, -3011681]\) \(-1693700041/32000\) \(-122817609728000\) \([]\) \(110592\) \(1.4981\) \(\Gamma_0(N)\)-optimal
38720.ck2 38720bv2 \([0, 1, 0, 154719, -13969441]\) \(106718863559/83886080\) \(-321958994845368320\) \([]\) \(331776\) \(2.0474\)