Show commands: SageMath
Rank
The elliptic curves in class 36400bs have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 36400bs do not have complex multiplication.Modular form 36400.2.a.bs
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 36400bs
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 36400.cd2 | 36400bs1 | \([0, 1, 0, -231379008, -1468984984012]\) | \(-21405018343206000779641/2177246093750000000\) | \(-139343750000000000000000000\) | \([]\) | \(12192768\) | \(3.7564\) | \(\Gamma_0(N)\)-optimal |
| 36400.cd3 | 36400bs2 | \([0, 1, 0, 1424870992, 1347827515988]\) | \(4998853083179567995470359/2905108466204672000000\) | \(-185926941837099008000000000000\) | \([]\) | \(36578304\) | \(4.3057\) | |
| 36400.cd1 | 36400bs3 | \([0, 1, 0, -20201279008, 1172022159615988]\) | \(-14245586655234650511684983641/1028175397808386133196800\) | \(-65803225459736712524595200000000\) | \([]\) | \(109734912\) | \(4.8550\) |