Properties

Label 317680.bl
Number of curves $4$
Conductor $317680$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 317680.bl have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 317680.bl do not have complex multiplication.

Modular form 317680.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} - 3 q^{9} + q^{11} - 6 q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 317680.bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
317680.bl1 317680bl4 \([0, 0, 0, -2724467, -89070974]\) \(46424454082884/26794860125\) \(1290841908072852608000\) \([2]\) \(15925248\) \(2.7403\)  
317680.bl2 317680bl2 \([0, 0, 0, -1821967, 943208526]\) \(55537159171536/228765625\) \(2755194974884000000\) \([2, 2]\) \(7962624\) \(2.3938\)  
317680.bl3 317680bl1 \([0, 0, 0, -1820162, 945177059]\) \(885956203616256/15125\) \(11385103202000\) \([2]\) \(3981312\) \(2.0472\) \(\Gamma_0(N)\)-optimal
317680.bl4 317680bl3 \([0, 0, 0, -948347, 1849501914]\) \(-1957960715364/29541015625\) \(-1423137900250000000000\) \([2]\) \(15925248\) \(2.7403\)