Properties

Label 297440.t
Number of curves $2$
Conductor $297440$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 297440.t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 297440.t do not have complex multiplication.

Modular form 297440.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} - 4 q^{7} + q^{9} + q^{11} - 2 q^{15} + 4 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 297440.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
297440.t1 297440t2 \([0, -1, 0, -11041, -428559]\) \(7529536/275\) \(5436917657600\) \([2]\) \(829440\) \(1.2133\)  
297440.t2 297440t1 \([0, -1, 0, -1746, 19460]\) \(1906624/605\) \(186894044480\) \([2]\) \(414720\) \(0.86670\) \(\Gamma_0(N)\)-optimal