Show commands: SageMath
Rank
The elliptic curves in class 29120cd have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 29120cd do not have complex multiplication.Modular form 29120.2.a.cd
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 6 & 9 & 18 \\ 2 & 1 & 6 & 3 & 18 & 9 \\ 3 & 6 & 1 & 2 & 3 & 6 \\ 6 & 3 & 2 & 1 & 6 & 3 \\ 9 & 18 & 3 & 6 & 1 & 2 \\ 18 & 9 & 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 29120cd
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 29120.l6 | 29120cd1 | \([0, 1, 0, -76545, -8145665]\) | \(189208196468929/834928640\) | \(218871533404160\) | \([2]\) | \(110592\) | \(1.6041\) | \(\Gamma_0(N)\)-optimal |
| 29120.l4 | 29120cd2 | \([0, 1, 0, -1223425, -521259777]\) | \(772531501373731009/15142400\) | \(3969489305600\) | \([2]\) | \(221184\) | \(1.9507\) | |
| 29120.l5 | 29120cd3 | \([0, 1, 0, -424705, 100328703]\) | \(32318182904349889/2067798824000\) | \(542061054918656000\) | \([2]\) | \(331776\) | \(2.1534\) | |
| 29120.l3 | 29120cd4 | \([0, 1, 0, -1302785, -449876225]\) | \(932829715460155969/206949435875000\) | \(54250552918016000000\) | \([2]\) | \(663552\) | \(2.5000\) | |
| 29120.l2 | 29120cd5 | \([0, 1, 0, -33854465, 75806667775]\) | \(16369358802802724130049/4976562500\) | \(1304576000000000\) | \([2]\) | \(995328\) | \(2.7027\) | |
| 29120.l1 | 29120cd6 | \([0, 1, 0, -33858945, 75785596543]\) | \(16375858190544687071329/9025573730468750\) | \(2366000000000000000000\) | \([2]\) | \(1990656\) | \(3.0493\) |