Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+96x-16\)
|
(homogenize, simplify) |
\(y^2z=x^3+96xz^2-16z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+96x-16\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1, 9)$ | $1.2252335783173647502454785058$ | $\infty$ |
Integral points
\((1,\pm 9)\)
Invariants
Conductor: | $N$ | = | \( 2736 \) | = | $2^{4} \cdot 3^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-56733696$ | = | $-1 \cdot 2^{12} \cdot 3^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{32768}{19} \) | = | $2^{15} \cdot 19^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.17728019321720826723970438658$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0651731316767918878751503533$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.3175706029138485$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1976043618296632$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.2252335783173647502454785058$ |
|
Real period: | $\Omega$ | ≈ | $1.1775864722440350509187207521$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.8856369743313623825014774096 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.885636974 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.177586 \cdot 1.225234 \cdot 2}{1^2} \\ & \approx 2.885636974\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 576 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | additive | -1 | 4 | 12 | 0 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 27.36.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2052 = 2^{2} \cdot 3^{3} \cdot 19 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 1903 & 1371 \\ 1781 & 1604 \end{array}\right),\left(\begin{array}{rr} 1999 & 54 \\ 1998 & 55 \end{array}\right),\left(\begin{array}{rr} 1025 & 0 \\ 0 & 2051 \end{array}\right),\left(\begin{array}{rr} 2021 & 2016 \\ 1718 & 1631 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1058 & 2043 \\ 1363 & 1262 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 334 & 1447 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 1079 & 1998 \\ 1080 & 1997 \end{array}\right)$.
The torsion field $K:=\Q(E[2052])$ is a degree-$2872143360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2052\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 171 = 3^{2} \cdot 19 \) |
$3$ | additive | $2$ | \( 304 = 2^{4} \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 144 = 2^{4} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 2736q
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 19a3, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/3\Z\) | 2.2.12.1-361.1-a3 |
$3$ | 3.1.76.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.109744.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.75064896.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.6.225194688.1 | \(\Z/9\Z\) | not in database |
$6$ | 6.2.2495232.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.389136420864.4 | \(\Z/9\Z\) | not in database |
$12$ | 12.0.2247651966910464.3 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.9772323551808386904719622144.1 | \(\Z/6\Z\) | not in database |
$18$ | 18.6.263852735898826446427429797888.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | ord | ord | ord | nonsplit | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.