Learn more

Refine search


Results (1-50 of 117 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
19.a3 19.a \( 19 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, 1, 0]$ \(y^2+y=x^3+x^2+x\)
171.b3 171.b \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.225966868$ $[0, 0, 1, 6, 0]$ \(y^2+y=x^3+6x\)
304.f3 304.f \( 2^{4} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 11, -3]$ \(y^2=x^3-x^2+11x-3\)
361.b3 361.b \( 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 241, -17]$ \(y^2+y=x^3-x^2+241x-17\)
475.b3 475.b \( 5^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 17, -7]$ \(y^2+y=x^3-x^2+17x-7\)
931.a3 931.a \( 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 33, -8]$ \(y^2+y=x^3-x^2+33x-8\)
1216.b3 1216.b \( 2^{6} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.595904332$ $[0, 1, 0, 3, 1]$ \(y^2=x^3+x^2+3x+1\)
1216.o3 1216.o \( 2^{6} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.018592368$ $[0, -1, 0, 3, -1]$ \(y^2=x^3-x^2+3x-1\)
2299.b3 2299.b \( 11^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 81, 39]$ \(y^2+y=x^3+x^2+81x+39\)
2736.c3 2736.c \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.225233578$ $[0, 0, 0, 96, -16]$ \(y^2=x^3+96x-16\)
3211.a3 3211.a \( 13^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.603915231$ $[0, 1, 1, 113, 17]$ \(y^2+y=x^3+x^2+113x+17\)
3249.d3 3249.d \( 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.022490498$ $[0, 0, 1, 2166, -1715]$ \(y^2+y=x^3+2166x-1715\)
4275.i3 4275.i \( 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.452281787$ $[0, 0, 1, 150, 31]$ \(y^2+y=x^3+150x+31\)
5491.b3 5491.b \( 17^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 193, -110]$ \(y^2+y=x^3-x^2+193x-110\)
5776.c3 5776.c \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.838208995$ $[0, 1, 0, 3851, -2781]$ \(y^2=x^3+x^2+3851x-2781\)
7600.c3 7600.c \( 2^{4} \cdot 5^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 267, 163]$ \(y^2=x^3+x^2+267x+163\)
8379.j3 8379.j \( 3^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $2.397397453$ $[0, 0, 1, 294, -86]$ \(y^2+y=x^3+294x-86\)
9025.d3 9025.d \( 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 6017, 9944]$ \(y^2+y=x^3+x^2+6017x+9944\)
10051.c3 10051.c \( 19 \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $0.944429848$ $[0, 1, 1, 353, 230]$ \(y^2+y=x^3+x^2+353x+230\)
10944.ck3 10944.ck \( 2^{6} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 24, 2]$ \(y^2=x^3+24x+2\)
10944.cl3 10944.cl \( 2^{6} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 24, -2]$ \(y^2=x^3+24x-2\)
14896.a3 14896.a \( 2^{4} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 523, -29]$ \(y^2=x^3+x^2+523x-29\)
15979.e3 15979.e \( 19 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $4.198425979$ $[0, -1, 1, 561, -413]$ \(y^2+y=x^3-x^2+561x-413\)
17689.f3 17689.f \( 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.115929906$ $[0, 1, 1, 11793, -17853]$ \(y^2+y=x^3+x^2+11793x-17853\)
18259.a3 18259.a \( 19 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $4.747848387$ $[0, -1, 1, 641, 62]$ \(y^2+y=x^3-x^2+641x+62\)
20691.i3 20691.i \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $2.279168484$ $[0, 0, 1, 726, -333]$ \(y^2+y=x^3+726x-333\)
23104.i3 23104.i \( 2^{6} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.622303643$ $[0, 1, 0, 963, 829]$ \(y^2=x^3+x^2+963x+829\)
23104.bs3 23104.bs \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.632179434$ $[0, -1, 0, 963, -829]$ \(y^2=x^3-x^2+963x-829\)
23275.l3 23275.l \( 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 817, 669]$ \(y^2+y=x^3+x^2+817x+669\)
26011.a3 26011.a \( 19 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $1.552802376$ $[0, 1, 1, 913, -165]$ \(y^2+y=x^3+x^2+913x-165\)
28899.k3 28899.k \( 3^{2} \cdot 13^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 1014, 549]$ \(y^2+y=x^3+1014x+549\)
30400.k3 30400.k \( 2^{6} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $2.369458376$ $[0, 1, 0, 67, 13]$ \(y^2=x^3+x^2+67x+13\)
30400.br3 30400.br \( 2^{6} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $6.006027384$ $[0, -1, 0, 67, -13]$ \(y^2=x^3-x^2+67x-13\)
31939.e3 31939.e \( 19 \cdot 41^{2} \) $1$ $\mathsf{trivial}$ $6.703304654$ $[0, -1, 1, 1121, -1012]$ \(y^2+y=x^3-x^2+1121x-1012\)
35131.b3 35131.b \( 19 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 1233, 325]$ \(y^2+y=x^3-x^2+1233x+325\)
36784.bk3 36784.bk \( 2^{4} \cdot 11^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1291, -1219]$ \(y^2=x^3-x^2+1291x-1219\)
41971.a3 41971.a \( 19 \cdot 47^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 1473, 1452]$ \(y^2+y=x^3+x^2+1473x+1452\)
43681.i3 43681.i \( 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $7.954065954$ $[0, -1, 1, 29121, -94238]$ \(y^2+y=x^3-x^2+29121x-94238\)
49419.j3 49419.j \( 3^{2} \cdot 17^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $5.830318600$ $[0, 0, 1, 1734, 1228]$ \(y^2+y=x^3+1734x+1228\)
51376.w3 51376.w \( 2^{4} \cdot 13^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $5.796263560$ $[0, -1, 0, 1803, 701]$ \(y^2=x^3-x^2+1803x+701\)
51984.i3 51984.i \( 2^{4} \cdot 3^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 34656, 109744]$ \(y^2=x^3+34656x+109744\)
53371.b3 53371.b \( 19 \cdot 53^{2} \) $1$ $\mathsf{trivial}$ $4.041534979$ $[0, -1, 1, 1873, -2003]$ \(y^2+y=x^3-x^2+1873x-2003\)
57475.g3 57475.g \( 5^{2} \cdot 11^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 2017, 868]$ \(y^2+y=x^3-x^2+2017x+868\)
59584.u3 59584.u \( 2^{6} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $4.192093972$ $[0, 1, 0, 131, 69]$ \(y^2=x^3+x^2+131x+69\)
59584.db3 59584.db \( 2^{6} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $10.70440027$ $[0, -1, 0, 131, -69]$ \(y^2=x^3-x^2+131x-69\)
61009.b3 61009.b \( 13^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.695009198$ $[0, -1, 1, 40673, 125972]$ \(y^2+y=x^3-x^2+40673x+125972\)
66139.a3 66139.a \( 19 \cdot 59^{2} \) $1$ $\mathsf{trivial}$ $3.615231054$ $[0, 1, 1, 2321, 2675]$ \(y^2+y=x^3+x^2+2321x+2675\)
68400.cs3 68400.cs \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $6.352102587$ $[0, 0, 0, 2400, -2000]$ \(y^2=x^3+2400x-2000\)
70699.a3 70699.a \( 19 \cdot 61^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 2481, -1275]$ \(y^2+y=x^3+x^2+2481x-1275\)
80275.m3 80275.m \( 5^{2} \cdot 13^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $6.653549317$ $[0, -1, 1, 2817, -3482]$ \(y^2+y=x^3-x^2+2817x-3482\)
Next   Download to