Learn more

Refine search


Results (1-50 of 51 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
2736.a1 2736.a \( 2^{4} \cdot 3^{2} \cdot 19 \) $2$ $\Z/2\Z$ $0.399355357$ $[0, 0, 0, -147, 610]$ \(y^2=x^3-147x+610\)
2736.a2 2736.a \( 2^{4} \cdot 3^{2} \cdot 19 \) $2$ $\Z/2\Z$ $0.399355357$ $[0, 0, 0, 213, 3130]$ \(y^2=x^3+213x+3130\)
2736.b1 2736.b \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2727, -54810]$ \(y^2=x^3-2727x-54810\)
2736.b2 2736.b \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -162, -945]$ \(y^2=x^3-162x-945\)
2736.c1 2736.c \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $11.02710220$ $[0, 0, 0, -110784, -14192656]$ \(y^2=x^3-110784x-14192656\)
2736.c2 2736.c \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $3.675700734$ $[0, 0, 0, -1344, -20176]$ \(y^2=x^3-1344x-20176\)
2736.c3 2736.c \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.225233578$ $[0, 0, 0, 96, -16]$ \(y^2=x^3+96x-16\)
2736.d1 2736.d \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -12607491, -17230231550]$ \(y^2=x^3-12607491x-17230231550\)
2736.d2 2736.d \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -787971, -269220350]$ \(y^2=x^3-787971x-269220350\)
2736.d3 2736.d \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -764931, -285703166]$ \(y^2=x^3-764931x-285703166\)
2736.d4 2736.d \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -50691, -3947006]$ \(y^2=x^3-50691x-3947006\)
2736.e1 2736.e \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/4\Z$ $0.977346635$ $[0, 0, 0, -11451, 458570]$ \(y^2=x^3-11451x+458570\)
2736.e2 2736.e \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.954693271$ $[0, 0, 0, -1731, -17710]$ \(y^2=x^3-1731x-17710\)
2736.e3 2736.e \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.909386543$ $[0, 0, 0, -1551, -23506]$ \(y^2=x^3-1551x-23506\)
2736.e4 2736.e \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.909386543$ $[0, 0, 0, 5109, -123046]$ \(y^2=x^3+5109x-123046\)
2736.f1 2736.f \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.381986400$ $[0, 0, 0, -531, 4690]$ \(y^2=x^3-531x+4690\)
2736.f2 2736.f \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.763972800$ $[0, 0, 0, -51, -14]$ \(y^2=x^3-51x-14\)
2736.g1 2736.g \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -831, 8890]$ \(y^2=x^3-831x+8890\)
2736.g2 2736.g \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 24, 511]$ \(y^2=x^3+24x+511\)
2736.h1 2736.h \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -632208, -193481296]$ \(y^2=x^3-632208x-193481296\)
2736.h2 2736.h \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 2832, -66256]$ \(y^2=x^3+2832x-66256\)
2736.i1 2736.i \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 492, 3004]$ \(y^2=x^3+492x+3004\)
2736.j1 2736.j \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.747745322$ $[0, 0, 0, -13755, -620822]$ \(y^2=x^3-13755x-620822\)
2736.j2 2736.j \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.495490644$ $[0, 0, 0, -12315, -755894]$ \(y^2=x^3-12315x-755894\)
2736.k1 2736.k \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -75, -358]$ \(y^2=x^3-75x-358\)
2736.l1 2736.l \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.256996674$ $[0, 0, 0, -135, -378]$ \(y^2=x^3-135x-378\)
2736.l2 2736.l \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.128498337$ $[0, 0, 0, 405, -2646]$ \(y^2=x^3+405x-2646\)
2736.m1 2736.m \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.095096230$ $[0, 0, 0, -15, 14]$ \(y^2=x^3-15x+14\)
2736.m2 2736.m \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.547548115$ $[0, 0, 0, 45, 98]$ \(y^2=x^3+45x+98\)
2736.n1 2736.n \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $4.539488286$ $[0, 0, 0, -12315, -4231222]$ \(y^2=x^3-12315x-4231222\)
2736.n2 2736.n \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.504387587$ $[0, 0, 0, -2235, 40682]$ \(y^2=x^3-2235x+40682\)
2736.n3 2736.n \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.513162762$ $[0, 0, 0, 1365, 154586]$ \(y^2=x^3+1365x+154586\)
2736.o1 2736.o \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $5.835684370$ $[0, 0, 0, -61635, -5889598]$ \(y^2=x^3-61635x-5889598\)
2736.o2 2736.o \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.917842185$ $[0, 0, 0, -60195, -6177886]$ \(y^2=x^3-60195x-6177886\)
2736.o3 2736.o \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.945228123$ $[0, 0, 0, -1155, 1154]$ \(y^2=x^3-1155x+1154\)
2736.o4 2736.o \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.972614061$ $[0, 0, 0, 4605, 9218]$ \(y^2=x^3+4605x+9218\)
2736.p1 2736.p \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.851903499$ $[0, 0, 0, -12, 92]$ \(y^2=x^3-12x+92\)
2736.q1 2736.q \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -192, -1028]$ \(y^2=x^3-192x-1028\)
2736.r1 2736.r \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.103436408$ $[0, 0, 0, -4779, -126630]$ \(y^2=x^3-4779x-126630\)
2736.r2 2736.r \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.551718204$ $[0, 0, 0, -459, 378]$ \(y^2=x^3-459x+378\)
2736.s1 2736.s \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -14619, 680330]$ \(y^2=x^3-14619x+680330\)
2736.s2 2736.s \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -939, 10010]$ \(y^2=x^3-939x+10010\)
2736.s3 2736.s \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -219, -1078]$ \(y^2=x^3-219x-1078\)
2736.s4 2736.s \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, 1221, 49322]$ \(y^2=x^3+1221x+49322\)
2736.t1 2736.t \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.578933389$ $[0, 0, 0, 24, 268]$ \(y^2=x^3+24x+268\)
2736.u1 2736.u \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -516, 5132]$ \(y^2=x^3-516x+5132\)
2736.v1 2736.v \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -336, 2608]$ \(y^2=x^3-336x+2608\)
2736.w1 2736.w \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -10083, -431390]$ \(y^2=x^3-10083x-431390\)
2736.w2 2736.w \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -3, 2050]$ \(y^2=x^3-3x+2050\)
2736.x1 2736.x \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -303, 2030]$ \(y^2=x^3-303x+2030\)
Next   Download to