Properties

Label 2736.2.a.c
Level $2736$
Weight $2$
Character orbit 2736.a
Self dual yes
Analytic conductor $21.847$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(1,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8470699930\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 3 q^{5} + q^{7} + 3 q^{11} - 4 q^{13} + 3 q^{17} - q^{19} + 4 q^{25} - 6 q^{29} + 4 q^{31} - 3 q^{35} + 2 q^{37} + 6 q^{41} + q^{43} - 3 q^{47} - 6 q^{49} - 12 q^{53} - 9 q^{55} - 6 q^{59} - q^{61} + 12 q^{65} + 4 q^{67} + 6 q^{71} - 7 q^{73} + 3 q^{77} - 8 q^{79} + 12 q^{83} - 9 q^{85} - 12 q^{89} - 4 q^{91} + 3 q^{95} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −3.00000 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.2.a.c 1
3.b odd 2 1 304.2.a.f 1
4.b odd 2 1 171.2.a.b 1
12.b even 2 1 19.2.a.a 1
15.d odd 2 1 7600.2.a.c 1
20.d odd 2 1 4275.2.a.i 1
24.f even 2 1 1216.2.a.o 1
24.h odd 2 1 1216.2.a.b 1
28.d even 2 1 8379.2.a.j 1
57.d even 2 1 5776.2.a.c 1
60.h even 2 1 475.2.a.b 1
60.l odd 4 2 475.2.b.a 2
76.d even 2 1 3249.2.a.d 1
84.h odd 2 1 931.2.a.a 1
84.j odd 6 2 931.2.f.b 2
84.n even 6 2 931.2.f.c 2
132.d odd 2 1 2299.2.a.b 1
156.h even 2 1 3211.2.a.a 1
204.h even 2 1 5491.2.a.b 1
228.b odd 2 1 361.2.a.b 1
228.m even 6 2 361.2.c.c 2
228.n odd 6 2 361.2.c.a 2
228.u odd 18 6 361.2.e.e 6
228.v even 18 6 361.2.e.d 6
1140.p odd 2 1 9025.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.2.a.a 1 12.b even 2 1
171.2.a.b 1 4.b odd 2 1
304.2.a.f 1 3.b odd 2 1
361.2.a.b 1 228.b odd 2 1
361.2.c.a 2 228.n odd 6 2
361.2.c.c 2 228.m even 6 2
361.2.e.d 6 228.v even 18 6
361.2.e.e 6 228.u odd 18 6
475.2.a.b 1 60.h even 2 1
475.2.b.a 2 60.l odd 4 2
931.2.a.a 1 84.h odd 2 1
931.2.f.b 2 84.j odd 6 2
931.2.f.c 2 84.n even 6 2
1216.2.a.b 1 24.h odd 2 1
1216.2.a.o 1 24.f even 2 1
2299.2.a.b 1 132.d odd 2 1
2736.2.a.c 1 1.a even 1 1 trivial
3211.2.a.a 1 156.h even 2 1
3249.2.a.d 1 76.d even 2 1
4275.2.a.i 1 20.d odd 2 1
5491.2.a.b 1 204.h even 2 1
5776.2.a.c 1 57.d even 2 1
7600.2.a.c 1 15.d odd 2 1
8379.2.a.j 1 28.d even 2 1
9025.2.a.d 1 1140.p odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2736))\):

\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{7} - 1 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display
\( T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 3 \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T - 3 \) Copy content Toggle raw display
$13$ \( T + 4 \) Copy content Toggle raw display
$17$ \( T - 3 \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T + 3 \) Copy content Toggle raw display
$53$ \( T + 12 \) Copy content Toggle raw display
$59$ \( T + 6 \) Copy content Toggle raw display
$61$ \( T + 1 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T - 6 \) Copy content Toggle raw display
$73$ \( T + 7 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T + 12 \) Copy content Toggle raw display
$97$ \( T - 8 \) Copy content Toggle raw display
show more
show less