sage:E = EllipticCurve("b1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 26b have
rank 0.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 2 | 1−T |
| 13 | 1+T |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 3 |
1+3T+3T2 |
1.3.d
|
| 5 |
1+T+5T2 |
1.5.b
|
| 7 |
1−T+7T2 |
1.7.ab
|
| 11 |
1+2T+11T2 |
1.11.c
|
| 17 |
1+3T+17T2 |
1.17.d
|
| 19 |
1−6T+19T2 |
1.19.ag
|
| 23 |
1+4T+23T2 |
1.23.e
|
| 29 |
1−2T+29T2 |
1.29.ac
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 26b do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1771)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 26b
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 26.b2 |
26b1 |
[1,−1,1,−3,3] |
−2146689/1664 |
−1664 |
[7] |
2 |
−0.68316
|
Γ0(N)-optimal |
| 26.b1 |
26b2 |
[1,−1,1,−213,−1257] |
−1064019559329/125497034 |
−125497034 |
[] |
14 |
0.28979
|
|