Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+210x+900\) | (homogenize, simplify) |
\(y^2z+xyz=x^3+210xz^2+900z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+272133x+41173974\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{8}\Z\)
Torsion generators
\( \left(0, 30\right) \)
Integral points
\( \left(-4, 2\right) \), \( \left(0, 30\right) \), \( \left(0, -30\right) \), \( \left(12, 66\right) \), \( \left(12, -78\right) \), \( \left(60, 450\right) \), \( \left(60, -510\right) \)
Invariants
Conductor: | \( 210 \) | = | $2 \cdot 3 \cdot 5 \cdot 7$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-928972800 $ | = | $-1 \cdot 2^{16} \cdot 3^{4} \cdot 5^{2} \cdot 7 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{1023887723039}{928972800} \) | = | $2^{-16} \cdot 3^{-4} \cdot 5^{-2} \cdot 7^{-1} \cdot 10079^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.40813505577567242811857400449\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.40813505577567242811857400449\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.999810038071446\dots$ | |||
Szpiro ratio: | $5.171885516084613\dots$ |
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $1.0259330100195332631677131886\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 128 $ = $ 2^{4}\cdot2^{2}\cdot2\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $8$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 2.0518660200390665263354263771 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 2.051866020 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.025933 \cdot 1.000000 \cdot 128}{8^2} \approx 2.051866020$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 128 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.96.0.95 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 992 & 29 \\ 907 & 2562 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 2263 & 26 \\ 822 & 491 \end{array}\right),\left(\begin{array}{rr} 2711 & 26 \\ 2118 & 875 \end{array}\right),\left(\begin{array}{rr} 3329 & 32 \\ 3328 & 33 \end{array}\right),\left(\begin{array}{rr} 2103 & 2 \\ 2122 & 15 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 798 & 1355 \end{array}\right),\left(\begin{array}{rr} 1921 & 32 \\ 1514 & 479 \end{array}\right)$.
The torsion field $K:=\Q(E[3360])$ is a degree-$23781703680$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3360\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 7 \) |
$3$ | split multiplicative | $4$ | \( 70 = 2 \cdot 5 \cdot 7 \) |
$5$ | split multiplicative | $6$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
$7$ | nonsplit multiplicative | $8$ | \( 30 = 2 \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 210.e
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{8}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/8\Z\) | 2.0.7.1-6300.2-c5 |
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/16\Z\) | not in database |
$2$ | \(\Q(\sqrt{105}) \) | \(\Z/16\Z\) | not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{-15})\) | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | 8.0.18823840000.2 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.2439569664.6 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | 8.0.2286144000000.33 | \(\Z/32\Z\) | not in database |
$8$ | 8.4.5489031744000000.40 | \(\Z/32\Z\) | not in database |
$8$ | 8.2.4253299470000.8 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/48\Z\) | not in database |
$16$ | deg 16 | \(\Z/48\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Reduction type | split | split | split | nonsplit |
$\lambda$-invariant(s) | 2 | 5 | 1 | 0 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.