Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 210.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
210.e1 | 210e7 | \([1, 0, 0, -1920800, -1024800150]\) | \(783736670177727068275201/360150\) | \(360150\) | \([2]\) | \(2048\) | \(1.7944\) | |
210.e2 | 210e5 | \([1, 0, 0, -120050, -16020000]\) | \(191342053882402567201/129708022500\) | \(129708022500\) | \([2, 2]\) | \(1024\) | \(1.4479\) | |
210.e3 | 210e8 | \([1, 0, 0, -119300, -16229850]\) | \(-187778242790732059201/4984939585440150\) | \(-4984939585440150\) | \([2]\) | \(2048\) | \(1.7944\) | |
210.e4 | 210e4 | \([1, 0, 0, -15070, 710612]\) | \(378499465220294881/120530818800\) | \(120530818800\) | \([8]\) | \(512\) | \(1.1013\) | |
210.e5 | 210e3 | \([1, 0, 0, -7550, -247500]\) | \(47595748626367201/1215506250000\) | \(1215506250000\) | \([2, 4]\) | \(512\) | \(1.1013\) | |
210.e6 | 210e2 | \([1, 0, 0, -1070, 7812]\) | \(135487869158881/51438240000\) | \(51438240000\) | \([2, 8]\) | \(256\) | \(0.75471\) | |
210.e7 | 210e1 | \([1, 0, 0, 210, 900]\) | \(1023887723039/928972800\) | \(-928972800\) | \([8]\) | \(128\) | \(0.40813\) | \(\Gamma_0(N)\)-optimal |
210.e8 | 210e6 | \([1, 0, 0, 1270, -789048]\) | \(226523624554079/269165039062500\) | \(-269165039062500\) | \([4]\) | \(1024\) | \(1.4479\) |
Rank
sage: E.rank()
The elliptic curves in class 210.e have rank \(0\).
Complex multiplication
The elliptic curves in class 210.e do not have complex multiplication.Modular form 210.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.