Properties

Label 210.e
Number of curves $8$
Conductor $210$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 210.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
210.e1 210e7 \([1, 0, 0, -1920800, -1024800150]\) \(783736670177727068275201/360150\) \(360150\) \([2]\) \(2048\) \(1.7944\)  
210.e2 210e5 \([1, 0, 0, -120050, -16020000]\) \(191342053882402567201/129708022500\) \(129708022500\) \([2, 2]\) \(1024\) \(1.4479\)  
210.e3 210e8 \([1, 0, 0, -119300, -16229850]\) \(-187778242790732059201/4984939585440150\) \(-4984939585440150\) \([2]\) \(2048\) \(1.7944\)  
210.e4 210e4 \([1, 0, 0, -15070, 710612]\) \(378499465220294881/120530818800\) \(120530818800\) \([8]\) \(512\) \(1.1013\)  
210.e5 210e3 \([1, 0, 0, -7550, -247500]\) \(47595748626367201/1215506250000\) \(1215506250000\) \([2, 4]\) \(512\) \(1.1013\)  
210.e6 210e2 \([1, 0, 0, -1070, 7812]\) \(135487869158881/51438240000\) \(51438240000\) \([2, 8]\) \(256\) \(0.75471\)  
210.e7 210e1 \([1, 0, 0, 210, 900]\) \(1023887723039/928972800\) \(-928972800\) \([8]\) \(128\) \(0.40813\) \(\Gamma_0(N)\)-optimal
210.e8 210e6 \([1, 0, 0, 1270, -789048]\) \(226523624554079/269165039062500\) \(-269165039062500\) \([4]\) \(1024\) \(1.4479\)  

Rank

sage: E.rank()
 

The elliptic curves in class 210.e have rank \(0\).

Complex multiplication

The elliptic curves in class 210.e do not have complex multiplication.

Modular form 210.2.a.e

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} - 2 q^{13} - q^{14} + q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.