Learn more

Refine search


Results (34 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
210.a1 210.a \( 2 \cdot 3 \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $0.532646580$ $[1, 1, 0, -373, 2623]$ \(y^2+xy=x^3+x^2-373x+2623\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.bb.1.16, 140.12.0.?, $\ldots$
210.a2 210.a \( 2 \cdot 3 \cdot 5 \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.266323290$ $[1, 1, 0, -23, 33]$ \(y^2+xy=x^3+x^2-23x+33\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 140.12.0.?, $\ldots$
210.a3 210.a \( 2 \cdot 3 \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $0.532646580$ $[1, 1, 0, -3, -3]$ \(y^2+xy=x^3+x^2-3x-3\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.bb.1.2, $\ldots$
210.a4 210.a \( 2 \cdot 3 \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $0.532646580$ $[1, 1, 0, 7, 147]$ \(y^2+xy=x^3+x^2+7x+147\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.1, 24.24.0-24.v.1.4, $\ldots$
210.b1 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -351233, -80149132]$ \(y^2+xy+y=x^3-351233x-80149132\) 2.3.0.a.1, 3.8.0-3.a.1.1, 4.12.0-4.c.1.2, 6.24.0-6.a.1.2, 12.96.0-12.c.4.6, $\ldots$
210.b2 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -21953, -1253644]$ \(y^2+xy+y=x^3-21953x-1253644\) 2.6.0.a.1, 3.8.0-3.a.1.1, 4.12.0-2.a.1.1, 6.48.0-6.a.1.2, 12.96.0-12.a.2.15, $\ldots$
210.b3 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 1, -20353, -1443724]$ \(y^2+xy+y=x^3-20353x-1443724\) 2.3.0.a.1, 3.8.0-3.a.1.1, 4.12.0-4.c.1.1, 6.24.0-6.a.1.2, 12.96.0-12.c.2.8, $\ldots$
210.b4 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -4358, -109132]$ \(y^2+xy+y=x^3-4358x-109132\) 2.3.0.a.1, 3.8.0-3.a.1.2, 4.12.0-4.c.1.2, 6.24.0-6.a.1.4, 12.96.0-12.c.3.7, $\ldots$
210.b5 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1473, -16652]$ \(y^2+xy+y=x^3-1473x-16652\) 2.3.0.a.1, 3.8.0-3.a.1.1, 4.6.0.c.1, 6.24.0-6.a.1.2, 8.12.0-4.c.1.5, $\ldots$
210.b6 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 1, -578, 2756]$ \(y^2+xy+y=x^3-578x+2756\) 2.6.0.a.1, 3.8.0-3.a.1.2, 4.12.0-2.a.1.1, 6.48.0-6.a.1.1, 12.96.0-12.a.1.7, $\ldots$
210.b7 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -498, 4228]$ \(y^2+xy+y=x^3-498x+4228\) 2.3.0.a.1, 3.8.0-3.a.1.2, 4.6.0.c.1, 6.24.0-6.a.1.4, 8.12.0-4.c.1.5, $\ldots$
210.b8 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/12\Z$ $1$ $[1, 0, 1, 1922, 20756]$ \(y^2+xy+y=x^3+1922x+20756\) 2.3.0.a.1, 3.8.0-3.a.1.2, 4.12.0-4.c.1.1, 6.24.0-6.a.1.4, 12.96.0-12.c.1.8, $\ldots$
210.c1 210.c \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -16800, -845133]$ \(y^2+xy+y=x^3+x^2-16800x-845133\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.6, 16.48.0-16.e.1.6, 56.48.0-56.bh.1.7, $\ldots$
210.c2 210.c \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -1050, -13533]$ \(y^2+xy+y=x^3+x^2-1050x-13533\) 2.6.0.a.1, 4.24.0-4.b.1.1, 8.48.0-8.e.2.4, 56.96.0-56.n.1.2, 120.96.0.?, $\ldots$
210.c3 210.c \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -980, -15325]$ \(y^2+xy+y=x^3+x^2-980x-15325\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.bb.1.3, 56.96.0-56.bn.1.4, 240.96.0.?, $\ldots$
210.c4 210.c \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -370, 2435]$ \(y^2+xy+y=x^3+x^2-370x+2435\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.bb.2.4, 60.24.0-60.h.1.3, 112.96.0.?, $\ldots$
210.c5 210.c \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -70, -205]$ \(y^2+xy+y=x^3+x^2-70x-205\) 2.6.0.a.1, 4.24.0-4.b.1.3, 8.48.0-8.e.1.9, 56.96.0-56.r.1.6, 60.48.0-60.c.1.7, $\ldots$
210.c6 210.c \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, 10, -13]$ \(y^2+xy+y=x^3+x^2+10x-13\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.2, 16.48.0-16.e.2.7, 30.6.0.a.1, $\ldots$
210.d1 210.d \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -6451, 124931]$ \(y^2+xy=x^3-6451x+124931\) 2.3.0.a.1, 3.8.0-3.a.1.1, 4.6.0.c.1, 6.24.0-6.a.1.2, 8.12.0-4.c.1.4, $\ldots$
210.d2 210.d \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -5761, 167825]$ \(y^2+xy=x^3-5761x+167825\) 2.3.0.a.1, 3.8.0-3.a.1.2, 4.6.0.c.1, 6.24.0-6.a.1.4, 8.12.0-4.c.1.4, $\ldots$
210.d3 210.d \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -2701, -52819]$ \(y^2+xy=x^3-2701x-52819\) 2.6.0.a.1, 3.8.0-3.a.1.1, 6.48.0-6.a.1.2, 8.12.0-2.a.1.1, 24.96.0-24.o.2.31, $\ldots$
210.d4 210.d \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -2681, -53655]$ \(y^2+xy=x^3-2681x-53655\) 2.3.0.a.1, 3.8.0-3.a.1.1, 4.6.0.c.1, 6.24.0-6.a.1.2, 8.12.0-4.c.1.2, $\ldots$
210.d5 210.d \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 0, -361, 2585]$ \(y^2+xy=x^3-361x+2585\) 2.6.0.a.1, 3.8.0-3.a.1.2, 6.48.0-6.a.1.1, 8.12.0-2.a.1.1, 24.96.0-24.o.1.15, $\ldots$
210.d6 210.d \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -81, 6561]$ \(y^2+xy=x^3-81x+6561\) 2.3.0.a.1, 3.8.0-3.a.1.2, 4.6.0.c.1, 6.24.0-6.a.1.4, 8.12.0-4.c.1.3, $\ldots$
210.d7 210.d \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -41, -39]$ \(y^2+xy=x^3-41x-39\) 2.3.0.a.1, 3.8.0-3.a.1.2, 4.6.0.c.1, 6.24.0-6.a.1.4, 8.12.0-4.c.1.2, $\ldots$
210.d8 210.d \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 729, -176985]$ \(y^2+xy=x^3+729x-176985\) 2.3.0.a.1, 3.8.0-3.a.1.1, 4.6.0.c.1, 6.24.0-6.a.1.2, 8.12.0-4.c.1.3, $\ldots$
210.e1 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1920800, -1024800150]$ \(y^2+xy=x^3-1920800x-1024800150\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.bb.2.3, 16.96.0-16.v.2.5, 24.96.0-24.bl.2.7, $\ldots$
210.e2 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -120050, -16020000]$ \(y^2+xy=x^3-120050x-16020000\) 2.6.0.a.1, 4.24.0-4.b.1.1, 8.96.0-8.l.1.1, 24.192.1-24.ch.1.1, 80.192.2.?, $\ldots$
210.e3 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -119300, -16229850]$ \(y^2+xy=x^3-119300x-16229850\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.bb.2.3, 16.96.0-16.v.2.5, 24.96.0-24.bp.2.7, $\ldots$
210.e4 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/8\Z$ $1$ $[1, 0, 0, -15070, 710612]$ \(y^2+xy=x^3-15070x+710612\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.bb.1.1, 16.96.0-16.v.1.2, 28.24.0-28.h.1.2, $\ldots$
210.e5 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -7550, -247500]$ \(y^2+xy=x^3-7550x-247500\) 2.6.0.a.1, 4.48.0-4.b.1.1, 8.96.0-8.c.1.1, 24.192.1-24.w.2.5, 56.192.1-56.x.1.1, $\ldots$
210.e6 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ $1$ $[1, 0, 0, -1070, 7812]$ \(y^2+xy=x^3-1070x+7812\) 2.6.0.a.1, 4.24.0-4.b.1.3, 8.96.0-8.l.2.2, 28.48.0-28.c.1.1, 48.192.1-48.f.2.3, $\ldots$
210.e7 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/8\Z$ $1$ $[1, 0, 0, 210, 900]$ \(y^2+xy=x^3+210x+900\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.bb.1.1, 14.6.0.b.1, 16.96.0-16.v.1.2, $\ldots$
210.e8 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, 1270, -789048]$ \(y^2+xy=x^3+1270x-789048\) 2.3.0.a.1, 4.24.0-4.d.1.1, 8.48.0-8.q.1.2, 16.96.0-16.j.1.2, 24.96.0-24.be.1.9, $\ldots$
  displayed columns for results