Properties

Label 204490.bp
Number of curves $1$
Conductor $204490$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 204490.bp1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 204490.bp do not have complex multiplication.

Modular form 204490.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 3 q^{3} + q^{4} - q^{5} - 3 q^{6} - 3 q^{7} + q^{8} + 6 q^{9} - q^{10} - 3 q^{12} - 3 q^{14} + 3 q^{15} + q^{16} + q^{17} + 6 q^{18} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 204490.bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
204490.bp1 204490b1 \([1, -1, 1, -62506203, -387491786613]\) \(-3158470573163361/5758438400000\) \(-49240329473528709401600000\) \([]\) \(125798400\) \(3.6200\) \(\Gamma_0(N)\)-optimal