Properties

Label 185900.bb
Number of curves $4$
Conductor $185900$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 185900.bb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 185900.bb do not have complex multiplication.

Modular form 185900.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 4 q^{7} + q^{9} + q^{11} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 185900.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
185900.bb1 185900bd4 \([0, -1, 0, -29998908, -63232089688]\) \(154639330142416/33275\) \(642448277900000000\) \([2]\) \(11197440\) \(2.8016\)  
185900.bb2 185900bd3 \([0, -1, 0, -1881533, -980221438]\) \(610462990336/8857805\) \(10688733223561250000\) \([2]\) \(5598720\) \(2.4551\)  
185900.bb3 185900bd2 \([0, -1, 0, -423908, -59889688]\) \(436334416/171875\) \(3318431187500000000\) \([2]\) \(3732480\) \(2.2523\)  
185900.bb4 185900bd1 \([0, -1, 0, -191533, 31666062]\) \(643956736/15125\) \(18251371531250000\) \([2]\) \(1866240\) \(1.9058\) \(\Gamma_0(N)\)-optimal