Properties

Label 144400bh
Number of curves $1$
Conductor $144400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 144400bh1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 144400bh do not have complex multiplication.

Modular form 144400.2.a.bh

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} - 2 q^{9} - 3 q^{13} + 7 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 144400bh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
144400.cc1 144400bh1 \([0, 1, 0, 213592, 72027188]\) \(357911/950\) \(-2860389564800000000\) \([]\) \(1658880\) \(2.2251\) \(\Gamma_0(N)\)-optimal