Properties

Label 12100.i
Number of curves $4$
Conductor $12100$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12100.i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12100.i do not have complex multiplication.

Modular form 12100.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 4 q^{7} + q^{9} - 4 q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 12100.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12100.i1 12100g4 \([0, -1, 0, -21478508, 38320869512]\) \(154639330142416/33275\) \(235794769100000000\) \([2]\) \(622080\) \(2.7181\)  
12100.i2 12100g3 \([0, -1, 0, -1347133, 594672762]\) \(610462990336/8857805\) \(3923035470901250000\) \([2]\) \(311040\) \(2.3715\)  
12100.i3 12100g2 \([0, -1, 0, -303508, 36469512]\) \(436334416/171875\) \(1217948187500000000\) \([2]\) \(207360\) \(2.1688\)  
12100.i4 12100g1 \([0, -1, 0, -137133, -19099738]\) \(643956736/15125\) \(6698715031250000\) \([2]\) \(103680\) \(1.8222\) \(\Gamma_0(N)\)-optimal