Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
64.1-a1 64.1-a Q(ζ13)+\Q(\zeta_{13})^+ 26 2^{6} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.4903748801.490374880 1.52868 125063766452793332a4+125063766452793332a3+12506376645279338a2125063766452793316a269060663725981116 -\frac{1250637664527933}{32} a^{4} + \frac{1250637664527933}{32} a^{3} + \frac{1250637664527933}{8} a^{2} - \frac{1250637664527933}{16} a - \frac{2690606637259811}{16} [1 \bigl[1 , 1 1 , a4+a34a22a+3 a^{4} + a^{3} - 4 a^{2} - 2 a + 3 , 29a4+28a3+116a256a85 -29 a^{4} + 28 a^{3} + 116 a^{2} - 56 a - 85 , 53a4+51a3+211a2102a263] -53 a^{4} + 51 a^{3} + 211 a^{2} - 102 a - 263\bigr] y2+xy+(a4+a34a22a+3)y=x3+x2+(29a4+28a3+116a256a85)x53a4+51a3+211a2102a263{y}^2+{x}{y}+\left(a^{4}+a^{3}-4a^{2}-2a+3\right){y}={x}^{3}+{x}^{2}+\left(-29a^{4}+28a^{3}+116a^{2}-56a-85\right){x}-53a^{4}+51a^{3}+211a^{2}-102a-263
64.1-a2 64.1-a Q(ζ13)+\Q(\zeta_{13})^+ 26 2^{6} 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 23287.1075023287.10750 1.52868 4613732a4+4613732a3+922746a2461373a992771 -\frac{461373}{2} a^{4} + \frac{461373}{2} a^{3} + 922746 a^{2} - 461373 a - 992771 [1 \bigl[1 , 1 1 , a4+a34a22a+2 a^{4} + a^{3} - 4 a^{2} - 2 a + 2 , 2a4+a3+8a22a7 -2 a^{4} + a^{3} + 8 a^{2} - 2 a - 7 , a3a2+2a+2] -a^{3} - a^{2} + 2 a + 2\bigr] y2+xy+(a4+a34a22a+2)y=x3+x2+(2a4+a3+8a22a7)xa3a2+2a+2{y}^2+{x}{y}+\left(a^{4}+a^{3}-4a^{2}-2a+2\right){y}={x}^{3}+{x}^{2}+\left(-2a^{4}+a^{3}+8a^{2}-2a-7\right){x}-a^{3}-a^{2}+2a+2
64.1-a3 64.1-a Q(ζ13)+\Q(\zeta_{13})^+ 26 2^{6} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.4903748801.490374880 1.52868 168091426932768 -\frac{1680914269}{32768} [a5+a44a33a2+2a \bigl[a^{5} + a^{4} - 4 a^{3} - 3 a^{2} + 2 a , a5+a4+4a34a22a+1 -a^{5} + a^{4} + 4 a^{3} - 4 a^{2} - 2 a + 1 , a5+a45a33a2+5a+1 a^{5} + a^{4} - 5 a^{3} - 3 a^{2} + 5 a + 1 , 297a5225a41336a3+923a2+1137a917 297 a^{5} - 225 a^{4} - 1336 a^{3} + 923 a^{2} + 1137 a - 917 , 4026a53233a418380a3+13142a2+16483a12186] 4026 a^{5} - 3233 a^{4} - 18380 a^{3} + 13142 a^{2} + 16483 a - 12186\bigr] y2+(a5+a44a33a2+2a)xy+(a5+a45a33a2+5a+1)y=x3+(a5+a4+4a34a22a+1)x2+(297a5225a41336a3+923a2+1137a917)x+4026a53233a418380a3+13142a2+16483a12186{y}^2+\left(a^{5}+a^{4}-4a^{3}-3a^{2}+2a\right){x}{y}+\left(a^{5}+a^{4}-5a^{3}-3a^{2}+5a+1\right){y}={x}^{3}+\left(-a^{5}+a^{4}+4a^{3}-4a^{2}-2a+1\right){x}^{2}+\left(297a^{5}-225a^{4}-1336a^{3}+923a^{2}+1137a-917\right){x}+4026a^{5}-3233a^{4}-18380a^{3}+13142a^{2}+16483a-12186
64.1-a4 64.1-a Q(ζ13)+\Q(\zeta_{13})^+ 26 2^{6} 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 23287.1075023287.10750 1.52868 13318 \frac{1331}{8} [a4+a33a22a \bigl[a^{4} + a^{3} - 3 a^{2} - 2 a , a5a45a3+4a2+6a1 a^{5} - a^{4} - 5 a^{3} + 4 a^{2} + 6 a - 1 , a55a3+5a+1 a^{5} - 5 a^{3} + 5 a + 1 , 11a5+a451a35a2+55a+15 11 a^{5} + a^{4} - 51 a^{3} - 5 a^{2} + 55 a + 15 , 49a58a4244a3+3a2+281a+64] 49 a^{5} - 8 a^{4} - 244 a^{3} + 3 a^{2} + 281 a + 64\bigr] y2+(a4+a33a22a)xy+(a55a3+5a+1)y=x3+(a5a45a3+4a2+6a1)x2+(11a5+a451a35a2+55a+15)x+49a58a4244a3+3a2+281a+64{y}^2+\left(a^{4}+a^{3}-3a^{2}-2a\right){x}{y}+\left(a^{5}-5a^{3}+5a+1\right){y}={x}^{3}+\left(a^{5}-a^{4}-5a^{3}+4a^{2}+6a-1\right){x}^{2}+\left(11a^{5}+a^{4}-51a^{3}-5a^{2}+55a+15\right){x}+49a^{5}-8a^{4}-244a^{3}+3a^{2}+281a+64
64.1-a5 64.1-a Q(ζ13)+\Q(\zeta_{13})^+ 26 2^{6} 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 23287.1075023287.10750 1.52868 4613732a44613732a3922746a2+461373a+3213232 \frac{461373}{2} a^{4} - \frac{461373}{2} a^{3} - 922746 a^{2} + 461373 a + \frac{321323}{2} [1 \bigl[1 , 1 1 , a4+a34a22a+3 a^{4} + a^{3} - 4 a^{2} - 2 a + 3 , a42a34a2+4a a^{4} - 2 a^{3} - 4 a^{2} + 4 a , 2a4+7a23] -2 a^{4} + 7 a^{2} - 3\bigr] y2+xy+(a4+a34a22a+3)y=x3+x2+(a42a34a2+4a)x2a4+7a23{y}^2+{x}{y}+\left(a^{4}+a^{3}-4a^{2}-2a+3\right){y}={x}^{3}+{x}^{2}+\left(a^{4}-2a^{3}-4a^{2}+4a\right){x}-2a^{4}+7a^{2}-3
64.1-a6 64.1-a Q(ζ13)+\Q(\zeta_{13})^+ 26 2^{6} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.4903748801.490374880 1.52868 125063766452793332a4125063766452793332a312506376645279338a2+125063766452793316a+87197504812004332 \frac{1250637664527933}{32} a^{4} - \frac{1250637664527933}{32} a^{3} - \frac{1250637664527933}{8} a^{2} + \frac{1250637664527933}{16} a + \frac{871975048120043}{32} [1 \bigl[1 , 1 1 , a4+a34a22a+2 a^{4} + a^{3} - 4 a^{2} - 2 a + 2 , 28a429a3112a2+58a+58 28 a^{4} - 29 a^{3} - 112 a^{2} + 58 a + 58 , 51a452a3205a2+104a3] 51 a^{4} - 52 a^{3} - 205 a^{2} + 104 a - 3\bigr] y2+xy+(a4+a34a22a+2)y=x3+x2+(28a429a3112a2+58a+58)x+51a452a3205a2+104a3{y}^2+{x}{y}+\left(a^{4}+a^{3}-4a^{2}-2a+2\right){y}={x}^{3}+{x}^{2}+\left(28a^{4}-29a^{3}-112a^{2}+58a+58\right){x}+51a^{4}-52a^{3}-205a^{2}+104a-3
64.1-b1 64.1-b Q(ζ13)+\Q(\zeta_{13})^+ 26 2^{6} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.1887004581.188700458 0.3132246950.313224695 2.51505 3857568588916384 -\frac{38575685889}{16384} [a5+a44a33a2+3a \bigl[a^{5} + a^{4} - 4 a^{3} - 3 a^{2} + 3 a , a5+a45a34a2+5a+2 a^{5} + a^{4} - 5 a^{3} - 4 a^{2} + 5 a + 2 , a5+a45a33a2+5a+1 a^{5} + a^{4} - 5 a^{3} - 3 a^{2} + 5 a + 1 , 1801a5+962a47561a34471a2+4023a+1051 1801 a^{5} + 962 a^{4} - 7561 a^{3} - 4471 a^{2} + 4023 a + 1051 , 70970a5+36003a4301077a3170680a2+170108a+46396] 70970 a^{5} + 36003 a^{4} - 301077 a^{3} - 170680 a^{2} + 170108 a + 46396\bigr] y2+(a5+a44a33a2+3a)xy+(a5+a45a33a2+5a+1)y=x3+(a5+a45a34a2+5a+2)x2+(1801a5+962a47561a34471a2+4023a+1051)x+70970a5+36003a4301077a3170680a2+170108a+46396{y}^2+\left(a^{5}+a^{4}-4a^{3}-3a^{2}+3a\right){x}{y}+\left(a^{5}+a^{4}-5a^{3}-3a^{2}+5a+1\right){y}={x}^{3}+\left(a^{5}+a^{4}-5a^{3}-4a^{2}+5a+2\right){x}^{2}+\left(1801a^{5}+962a^{4}-7561a^{3}-4471a^{2}+4023a+1051\right){x}+70970a^{5}+36003a^{4}-301077a^{3}-170680a^{2}+170108a+46396
64.1-b2 64.1-b Q(ζ13)+\Q(\zeta_{13})^+ 26 2^{6} 11 Z/7Z\Z/7\Z SU(2)\mathrm{SU}(2) 0.1698143510.169814351 36850.5722036850.57220 2.51505 3514 \frac{351}{4} [a5+a44a33a2+3a \bigl[a^{5} + a^{4} - 4 a^{3} - 3 a^{2} + 3 a , a5+a45a34a2+5a+2 a^{5} + a^{4} - 5 a^{3} - 4 a^{2} + 5 a + 2 , a5+a45a33a2+5a+1 a^{5} + a^{4} - 5 a^{3} - 3 a^{2} + 5 a + 1 , a5+2a4a3a2+3a+1 a^{5} + 2 a^{4} - a^{3} - a^{2} + 3 a + 1 , 20a57a4+93a3+50a252a14] -20 a^{5} - 7 a^{4} + 93 a^{3} + 50 a^{2} - 52 a - 14\bigr] y2+(a5+a44a33a2+3a)xy+(a5+a45a33a2+5a+1)y=x3+(a5+a45a34a2+5a+2)x2+(a5+2a4a3a2+3a+1)x20a57a4+93a3+50a252a14{y}^2+\left(a^{5}+a^{4}-4a^{3}-3a^{2}+3a\right){x}{y}+\left(a^{5}+a^{4}-5a^{3}-3a^{2}+5a+1\right){y}={x}^{3}+\left(a^{5}+a^{4}-5a^{3}-4a^{2}+5a+2\right){x}^{2}+\left(a^{5}+2a^{4}-a^{3}-a^{2}+3a+1\right){x}-20a^{5}-7a^{4}+93a^{3}+50a^{2}-52a-14
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.