Properties

Label 6.6.371293.1-64.1-a2
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 64 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 5 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{4}+a^{3}-4a^{2}-2a+2\right){y}={x}^{3}+{x}^{2}+\left(-2a^{4}+a^{3}+8a^{2}-2a-7\right){x}-a^{3}-a^{2}+2a+2\)
sage: E = EllipticCurve([K([1,0,0,0,0,0]),K([1,0,0,0,0,0]),K([2,-2,-4,1,1,0]),K([-7,-2,8,1,-2,0]),K([2,2,-1,-1,0,0])])
 
gp: E = ellinit([Polrev([1,0,0,0,0,0]),Polrev([1,0,0,0,0,0]),Polrev([2,-2,-4,1,1,0]),Polrev([-7,-2,8,1,-2,0]),Polrev([2,2,-1,-1,0,0])], K);
 
magma: E := EllipticCurve([K![1,0,0,0,0,0],K![1,0,0,0,0,0],K![2,-2,-4,1,1,0],K![-7,-2,8,1,-2,0],K![2,2,-1,-1,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{5}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(1 : -a^{3} + 2 a - 1 : 1\right)$$0$$5$

Invariants

Conductor: $\frak{N}$ = \((2)\) = \((2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 64 \) = \(64\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-2$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-2)\) = \((2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 64 \) = \(64\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{461373}{2} a^{4} + \frac{461373}{2} a^{3} + 922746 a^{2} - 461373 a - 992771 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 23287.107506209544771182610817319643780 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(5\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.52868 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.528680000 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 23287.107506 \cdot 1 \cdot 1 } { {5^2 \cdot 609.338166} } \approx 1.528682024$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2)\) \(64\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5, 9, 15 and 45.
Its isogeny class 64.1-a consists of curves linked by isogenies of degrees dividing 45.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q(\sqrt{13}) \) 2.2.13.1-4.1-a2