Properties

Label 6.6.371293.1-64.1-a4
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 64 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 5 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}+a^{3}-3a^{2}-2a\right){x}{y}+\left(a^{5}-5a^{3}+5a+1\right){y}={x}^{3}+\left(a^{5}-a^{4}-5a^{3}+4a^{2}+6a-1\right){x}^{2}+\left(11a^{5}+a^{4}-51a^{3}-5a^{2}+55a+15\right){x}+49a^{5}-8a^{4}-244a^{3}+3a^{2}+281a+64\)
sage: E = EllipticCurve([K([0,-2,-3,1,1,0]),K([-1,6,4,-5,-1,1]),K([1,5,0,-5,0,1]),K([15,55,-5,-51,1,11]),K([64,281,3,-244,-8,49])])
 
gp: E = ellinit([Polrev([0,-2,-3,1,1,0]),Polrev([-1,6,4,-5,-1,1]),Polrev([1,5,0,-5,0,1]),Polrev([15,55,-5,-51,1,11]),Polrev([64,281,3,-244,-8,49])], K);
 
magma: E := EllipticCurve([K![0,-2,-3,1,1,0],K![-1,6,4,-5,-1,1],K![1,5,0,-5,0,1],K![15,55,-5,-51,1,11],K![64,281,3,-244,-8,49]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 64 \) = \(64\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-8)\) = \((2)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 262144 \) = \(64^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1331}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{5} - 6 a^{3} - 2 a^{2} + 8 a + 4 : 10 a^{5} - 2 a^{4} - 50 a^{3} + 2 a^{2} + 58 a + 11 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 23287.107506209544771182610817319643780 \)
Tamagawa product: \( 1 \)
Torsion order: \(5\)
Leading coefficient: \( 1.52868 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(64\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 64.1-a consists of curves linked by isogenies of degrees dividing 45.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q(\sqrt{13}) \) 2.2.13.1-4.1-a5