Properties

Base field Q(2)\Q(\sqrt{2})
Label 2.2.8.1-686.1-d
Conductor 686.1
Rank 0 0

Related objects

Learn more

Base field Q(2)\Q(\sqrt{2})

Generator aa, with minimal polynomial x22 x^{2} - 2 ; class number 11.

Elliptic curves in class 686.1-d over Q(2)\Q(\sqrt{2})

Isogeny class 686.1-d contains 12 curves linked by isogenies of degrees dividing 36.

Curve label Weierstrass Coefficients
686.1-d1 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 683a1536 -683 a - 1536 , 19222a+21843] 19222 a + 21843\bigr]
686.1-d2 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 3a6 -3 a - 6 , 6a7] -6 a - 7\bigr]
686.1-d3 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 17a+39 17 a + 39 , 126a+143] 126 a + 143\bigr]
686.1-d4 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 132a376 132 a - 376 , 1908a+2353] -1908 a + 2353\bigr]
686.1-d5 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 143a321 -143 a - 321 , 1534a+1743] 1534 a + 1743\bigr]
686.1-d6 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 253a2161 -253 a - 2161 , 5170a37057] -5170 a - 37057\bigr]
686.1-d7 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 37477a93056 37477 a - 93056 , 8696054a9208877] 8696054 a - 9208877\bigr]
686.1-d8 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 43a96 -43 a - 96 , 270a307] -270 a - 307\bigr]
686.1-d9 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 2593a4241 -2593 a - 4241 , 94830a+138943] 94830 a + 138943\bigr]
686.1-d10 [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 10923a24576 -10923 a - 24576 , 1213206a+1378643] 1213206 a + 1378643\bigr]
686.1-d11 [1 \bigl[1 , a+1 -a + 1 , 1 1 , 485a759 485 a - 759 , 2705a+3591] -2705 a + 3591\bigr]
686.1-d12 [1 \bigl[1 , a+1 -a + 1 , 1 1 , 103060a164599 103060 a - 164599 , 23909933a32816619] 23909933 a - 32816619\bigr]

Rank

Rank: 0 0

Isogeny matrix

(193366124181223649134612362121843633112241264612123641216123623184966261263236612124122136463124361236631181229418262361816921812124324126161232186183629611823641246392121813643612961241832361)\left(\begin{array}{rrrrrrrrrrrr} 1 & 9 & 3 & 36 & 6 & 12 & 4 & 18 & 12 & 2 & 36 & 4 \\ 9 & 1 & 3 & 4 & 6 & 12 & 36 & 2 & 12 & 18 & 4 & 36 \\ 3 & 3 & 1 & 12 & 2 & 4 & 12 & 6 & 4 & 6 & 12 & 12 \\ 36 & 4 & 12 & 1 & 6 & 12 & 36 & 2 & 3 & 18 & 4 & 9 \\ 6 & 6 & 2 & 6 & 1 & 2 & 6 & 3 & 2 & 3 & 6 & 6 \\ 12 & 12 & 4 & 12 & 2 & 1 & 3 & 6 & 4 & 6 & 3 & 12 \\ 4 & 36 & 12 & 36 & 6 & 3 & 1 & 18 & 12 & 2 & 9 & 4 \\ 18 & 2 & 6 & 2 & 3 & 6 & 18 & 1 & 6 & 9 & 2 & 18 \\ 12 & 12 & 4 & 3 & 2 & 4 & 12 & 6 & 1 & 6 & 12 & 3 \\ 2 & 18 & 6 & 18 & 3 & 6 & 2 & 9 & 6 & 1 & 18 & 2 \\ 36 & 4 & 12 & 4 & 6 & 3 & 9 & 2 & 12 & 18 & 1 & 36 \\ 4 & 36 & 12 & 9 & 6 & 12 & 4 & 18 & 3 & 2 & 36 & 1 \end{array}\right)

Isogeny graph