Learn more

Refine search


Results (1-50 of 16686 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9.1-a1 9.1-a Q(2)\Q(\sqrt{2}) 32 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.2669233421.266923342 0.223962521 87372281659049 -\frac{873722816}{59049} [a \bigl[a , a1 -a - 1 , a+1 a + 1 , 40a60 -40 a - 60 , 153a220] -153 a - 220\bigr] y2+axy+(a+1)y=x3+(a1)x2+(40a60)x153a220{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-40a-60\right){x}-153a-220
9.1-a2 9.1-a Q(2)\Q(\sqrt{2}) 32 3^{2} 0 Z/10Z\Z/10\Z SU(2)\mathrm{SU}(2) 11 31.6730835631.67308356 0.223962521 649 \frac{64}{9} [a \bigl[a , a1 -a - 1 , a+1 a + 1 , 0 0 , 0] 0\bigr] y2+axy+(a+1)y=x3+(a1)x2{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}
9.1-a3 9.1-a Q(2)\Q(\sqrt{2}) 32 3^{2} 0 Z/10Z\Z/10\Z SU(2)\mathrm{SU}(2) 11 63.3461671263.34616712 0.223962521 851843 \frac{85184}{3} [a \bigl[a , a a , a+1 a + 1 , 2a3 -2 a - 3 , 0] 0\bigr] y2+axy+(a+1)y=x3+ax2+(2a3)x{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-2a-3\right){x}
9.1-a4 9.1-a Q(2)\Q(\sqrt{2}) 32 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.5338466852.533846685 0.223962521 58591911104243 \frac{58591911104}{243} [a \bigl[a , a a , a+1 a + 1 , 162a243 -162 a - 243 , 1495a2130] -1495 a - 2130\bigr] y2+axy+(a+1)y=x3+ax2+(162a243)x1495a2130{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-162a-243\right){x}-1495a-2130
17.1-a1 17.1-a Q(2)\Q(\sqrt{2}) 17 17 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 22.2316155222.23161552 0.436670169 94464289a+58688289 -\frac{94464}{289} a + \frac{58688}{289} [a \bigl[a , a+1 -a + 1 , a+1 a + 1 , 2a+1 -2 a + 1 , a] -a\bigr] y2+axy+(a+1)y=x3+(a+1)x2+(2a+1)xa{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a+1\right){x}-a
17.1-a2 17.1-a Q(2)\Q(\sqrt{2}) 17 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.4701795022.470179502 0.436670169 152267822054424137569a214774519571224137569 \frac{1522678220544}{24137569} a - \frac{2147745195712}{24137569} [a \bigl[a , a+1 -a + 1 , a+1 a + 1 , 13a19 13 a - 19 , 47a69] 47 a - 69\bigr] y2+axy+(a+1)y=x3+(a+1)x2+(13a19)x+47a69{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(13a-19\right){x}+47a-69
17.1-a3 17.1-a Q(2)\Q(\sqrt{2}) 17 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.9403590044.940359004 0.436670169 556153839388164913a+786520694418564913 -\frac{55615383938816}{4913} a + \frac{78652069441856}{4913} [a \bigl[a , 1 -1 , a+1 a + 1 , 34a53 -34 a - 53 , 113a163] -113 a - 163\bigr] y2+axy+(a+1)y=x3x2+(34a53)x113a163{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-34a-53\right){x}-113a-163
17.1-a4 17.1-a Q(2)\Q(\sqrt{2}) 17 17 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 44.4632310444.46323104 0.436670169 369075217a+528723217 \frac{3690752}{17} a + \frac{5287232}{17} [a \bigl[a , a+1 a + 1 , a+1 a + 1 , a1 a - 1 , 1] -1\bigr] y2+axy+(a+1)y=x3+(a+1)x2+(a1)x1{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-1\right){x}-1
17.2-a1 17.2-a Q(2)\Q(\sqrt{2}) 17 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.4701795022.470179502 0.436670169 152267822054424137569a214774519571224137569 -\frac{1522678220544}{24137569} a - \frac{2147745195712}{24137569} [a \bigl[a , a+1 a + 1 , a+1 a + 1 , 14a19 -14 a - 19 , 48a69] -48 a - 69\bigr] y2+axy+(a+1)y=x3+(a+1)x2+(14a19)x48a69{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-14a-19\right){x}-48a-69
17.2-a2 17.2-a Q(2)\Q(\sqrt{2}) 17 17 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 22.2316155222.23161552 0.436670169 94464289a+58688289 \frac{94464}{289} a + \frac{58688}{289} [a \bigl[a , a+1 a + 1 , a+1 a + 1 , a+1 a + 1 , 0] 0\bigr] y2+axy+(a+1)y=x3+(a+1)x2+(a+1)x{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+1\right){x}
17.2-a3 17.2-a Q(2)\Q(\sqrt{2}) 17 17 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 44.4632310444.46323104 0.436670169 369075217a+528723217 -\frac{3690752}{17} a + \frac{5287232}{17} [a \bigl[a , a+1 -a + 1 , a+1 a + 1 , 2a1 -2 a - 1 , a1] -a - 1\bigr] y2+axy+(a+1)y=x3+(a+1)x2+(2a1)xa1{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a-1\right){x}-a-1
17.2-a4 17.2-a Q(2)\Q(\sqrt{2}) 17 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.9403590044.940359004 0.436670169 556153839388164913a+786520694418564913 \frac{55615383938816}{4913} a + \frac{78652069441856}{4913} [a \bigl[a , 1 -1 , a+1 a + 1 , 33a53 33 a - 53 , 112a163] 112 a - 163\bigr] y2+axy+(a+1)y=x3x2+(33a53)x+112a163{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(33a-53\right){x}+112a-163
28.1-a1 28.1-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.1554410532.155441053 0.571547619 2951830656568413841287201a+4162272239513213841287201 -\frac{29518306565684}{13841287201} a + \frac{41622722395132}{13841287201} [a \bigl[a , a+1 -a + 1 , 0 0 , 9a18 -9 a - 18 , 320a467] -320 a - 467\bigr] y2+axy=x3+(a+1)x2+(9a18)x320a467{y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-9a-18\right){x}-320a-467
28.1-a2 28.1-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/12Z\Z/12\Z SU(2)\mathrm{SU}(2) 11 19.3989694819.39896948 0.571547619 8610933162401a+12177910122401 -\frac{861093316}{2401} a + \frac{1217791012}{2401} [a \bigl[a , a+1 -a + 1 , 0 0 , a+2 a + 2 , 12a+17] 12 a + 17\bigr] y2+axy=x3+(a+1)x2+(a+2)x+12a+17{y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(a+2\right){x}+12a+17
28.1-a3 28.1-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1554410532.155441053 0.571547619 91481168031853524343a+129373908533024396343 -\frac{91481168031853524}{343} a + \frac{129373908533024396}{343} [a \bigl[a , a+1 -a + 1 , 0 0 , 19a148 -19 a - 148 , 318a201] 318 a - 201\bigr] y2+axy=x3+(a+1)x2+(19a148)x+318a201{y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-19a-148\right){x}+318a-201
28.1-a4 28.1-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 19.3989694819.39896948 0.571547619 40967a+163847 \frac{4096}{7} a + \frac{16384}{7} [0 \bigl[0 , 1 -1 , 0 0 , 2a+3 -2 a + 3 , 0] 0\bigr] y2=x3x2+(2a+3)x{y}^2={x}^{3}-{x}^{2}+\left(-2a+3\right){x}
28.1-a5 28.1-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z SU(2)\mathrm{SU}(2) 11 38.7979389638.79793896 0.571547619 43574449a+71268849 \frac{435744}{49} a + \frac{712688}{49} [a \bigl[a , 1 -1 , a a , 2a4 2 a - 4 , a+1] -a + 1\bigr] y2+axy+ay=x3x2+(2a4)xa+1{y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(2a-4\right){x}-a+1
28.1-a6 28.1-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.3108821074.310882107 0.571547619 1137747277344117649a+1622386617968117649 -\frac{1137747277344}{117649} a + \frac{1622386617968}{117649} [a \bigl[a , a+1 -a + 1 , 0 0 , 34a53 -34 a - 53 , 133a203] -133 a - 203\bigr] y2+axy=x3+(a+1)x2+(34a53)x133a203{y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-34a-53\right){x}-133a-203
28.1-a7 28.1-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 19.3989694819.39896948 0.571547619 17206640287a+24340288527 \frac{1720664028}{7} a + \frac{2434028852}{7} [a \bigl[a , 1 -1 , a a , 17a29 17 a - 29 , 49a66] 49 a - 66\bigr] y2+axy+ay=x3x2+(17a29)x+49a66{y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(17a-29\right){x}+49a-66
28.1-a8 28.1-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1554410532.155441053 0.571547619 1545435312128343a+2185574023168343 \frac{1545435312128}{343} a + \frac{2185574023168}{343} [0 \bigl[0 , 1 -1 , 0 0 , 18a37 18 a - 37 , 68a108] 68 a - 108\bigr] y2=x3x2+(18a37)x+68a108{y}^2={x}^{3}-{x}^{2}+\left(18a-37\right){x}+68a-108
28.2-a1 28.2-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1554410532.155441053 0.571547619 1545435312128343a+2185574023168343 -\frac{1545435312128}{343} a + \frac{2185574023168}{343} [0 \bigl[0 , 1 -1 , 0 0 , 18a37 -18 a - 37 , 68a108] -68 a - 108\bigr] y2=x3x2+(18a37)x68a108{y}^2={x}^{3}-{x}^{2}+\left(-18a-37\right){x}-68a-108
28.2-a2 28.2-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 19.3989694819.39896948 0.571547619 40967a+163847 -\frac{4096}{7} a + \frac{16384}{7} [0 \bigl[0 , 1 -1 , 0 0 , 2a+3 2 a + 3 , 0] 0\bigr] y2=x3x2+(2a+3)x{y}^2={x}^{3}-{x}^{2}+\left(2a+3\right){x}
28.2-a3 28.2-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z SU(2)\mathrm{SU}(2) 11 38.7979389638.79793896 0.571547619 43574449a+71268849 -\frac{435744}{49} a + \frac{712688}{49} [a \bigl[a , 1 -1 , a a , 2a4 -2 a - 4 , a+1] a + 1\bigr] y2+axy+ay=x3x2+(2a4)x+a+1{y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-2a-4\right){x}+a+1
28.2-a4 28.2-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.1554410532.155441053 0.571547619 2951830656568413841287201a+4162272239513213841287201 \frac{29518306565684}{13841287201} a + \frac{41622722395132}{13841287201} [a \bigl[a , a+1 a + 1 , 0 0 , 9a18 9 a - 18 , 320a467] 320 a - 467\bigr] y2+axy=x3+(a+1)x2+(9a18)x+320a467{y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(9a-18\right){x}+320a-467
28.2-a5 28.2-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 19.3989694819.39896948 0.571547619 17206640287a+24340288527 -\frac{1720664028}{7} a + \frac{2434028852}{7} [a \bigl[a , 1 -1 , a a , 17a29 -17 a - 29 , 49a66] -49 a - 66\bigr] y2+axy+ay=x3x2+(17a29)x49a66{y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-17a-29\right){x}-49a-66
28.2-a6 28.2-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/12Z\Z/12\Z SU(2)\mathrm{SU}(2) 11 19.3989694819.39896948 0.571547619 8610933162401a+12177910122401 \frac{861093316}{2401} a + \frac{1217791012}{2401} [a \bigl[a , a+1 a + 1 , 0 0 , a+2 -a + 2 , 12a+17] -12 a + 17\bigr] y2+axy=x3+(a+1)x2+(a+2)x12a+17{y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-a+2\right){x}-12a+17
28.2-a7 28.2-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.3108821074.310882107 0.571547619 1137747277344117649a+1622386617968117649 \frac{1137747277344}{117649} a + \frac{1622386617968}{117649} [a \bigl[a , a+1 a + 1 , 0 0 , 34a53 34 a - 53 , 133a203] 133 a - 203\bigr] y2+axy=x3+(a+1)x2+(34a53)x+133a203{y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(34a-53\right){x}+133a-203
28.2-a8 28.2-a Q(2)\Q(\sqrt{2}) 227 2^{2} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1554410532.155441053 0.571547619 91481168031853524343a+129373908533024396343 \frac{91481168031853524}{343} a + \frac{129373908533024396}{343} [a \bigl[a , a+1 a + 1 , 0 0 , 19a148 19 a - 148 , 318a201] -318 a - 201\bigr] y2+axy=x3+(a+1)x2+(19a148)x318a201{y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(19a-148\right){x}-318a-201
31.1-a1 31.1-a Q(2)\Q(\sqrt{2}) 31 31 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.5444544632.544454463 0.449800251 78588372777605923521a+111138046783591923521 -\frac{78588372777605}{923521} a + \frac{111138046783591}{923521} [a+1 \bigl[a + 1 , a1 a - 1 , a+1 a + 1 , 7a21 -7 a - 21 , 31a52] -31 a - 52\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(7a21)x31a52{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-7a-21\right){x}-31a-52
31.1-a2 31.1-a Q(2)\Q(\sqrt{2}) 31 31 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 20.3556357020.35563570 0.449800251 4778031a+6915131 \frac{47780}{31} a + \frac{69151}{31} [a+1 \bigl[a + 1 , a1 a - 1 , a+1 a + 1 , 2a1 -2 a - 1 , a2] -a - 2\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(2a1)xa2{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a-1\right){x}-a-2
31.1-a3 31.1-a Q(2)\Q(\sqrt{2}) 31 31 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 10.1778178510.17781785 0.449800251 4423034250961a+6270751283961 \frac{4423034250}{961} a + \frac{6270751283}{961} [1 \bigl[1 , a1 -a - 1 , 1 1 , 10a14 10 a - 14 , 21a30] 21 a - 30\bigr] y2+xy+y=x3+(a1)x2+(10a14)x+21a30{y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(10a-14\right){x}+21a-30
31.1-a4 31.1-a Q(2)\Q(\sqrt{2}) 31 31 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.0889089265.088908926 0.449800251 186181226495887531a+263300015583314331 \frac{1861812264958875}{31} a + \frac{2633000155833143}{31} [1 \bigl[1 , a1 -a - 1 , 1 1 , 25a49 25 a - 49 , 79a+100] -79 a + 100\bigr] y2+xy+y=x3+(a1)x2+(25a49)x79a+100{y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(25a-49\right){x}-79a+100
31.2-a1 31.2-a Q(2)\Q(\sqrt{2}) 31 31 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 20.3556357020.35563570 0.449800251 4778031a+6915131 -\frac{47780}{31} a + \frac{69151}{31} [a+1 \bigl[a + 1 , a1 a - 1 , 1 1 , 0 0 , 0] 0\bigr] y2+(a+1)xy+y=x3+(a1)x2{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}
31.2-a2 31.2-a Q(2)\Q(\sqrt{2}) 31 31 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.0889089265.088908926 0.449800251 186181226495887531a+263300015583314331 -\frac{1861812264958875}{31} a + \frac{2633000155833143}{31} [1 \bigl[1 , a1 a - 1 , 1 1 , 25a49 -25 a - 49 , 79a+100] 79 a + 100\bigr] y2+xy+y=x3+(a1)x2+(25a49)x+79a+100{y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-25a-49\right){x}+79a+100
31.2-a3 31.2-a Q(2)\Q(\sqrt{2}) 31 31 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 10.1778178510.17781785 0.449800251 4423034250961a+6270751283961 -\frac{4423034250}{961} a + \frac{6270751283}{961} [1 \bigl[1 , a1 a - 1 , 1 1 , 10a14 -10 a - 14 , 21a30] -21 a - 30\bigr] y2+xy+y=x3+(a1)x2+(10a14)x21a30{y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-10a-14\right){x}-21a-30
31.2-a4 31.2-a Q(2)\Q(\sqrt{2}) 31 31 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.5444544632.544454463 0.449800251 78588372777605923521a+111138046783591923521 \frac{78588372777605}{923521} a + \frac{111138046783591}{923521} [a+1 \bigl[a + 1 , a1 a - 1 , 1 1 , 5a20 5 a - 20 , 10a40] 10 a - 40\bigr] y2+(a+1)xy+y=x3+(a1)x2+(5a20)x+10a40{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5a-20\right){x}+10a-40
32.1-a1 32.1-a Q(2)\Q(\sqrt{2}) 25 2^{5} 0 Z/2Z\Z/2\Z 64-64 N(U(1))N(\mathrm{U}(1)) 11 3.4375929093.437592909 0.607686314 29071392966a+41113158120 -29071392966 a + 41113158120 [a \bigl[a , 1 1 , 0 0 , 15a22 15 a - 22 , 46a69] 46 a - 69\bigr] y2+axy=x3+x2+(15a22)x+46a69{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(15a-22\right){x}+46a-69
32.1-a2 32.1-a Q(2)\Q(\sqrt{2}) 25 2^{5} 0 Z/4Z\Z/4\Z 64-64 N(U(1))N(\mathrm{U}(1)) 11 27.5007432727.50074327 0.607686314 29071392966a+41113158120 -29071392966 a + 41113158120 [a \bigl[a , 1 1 , a a , 15a23 15 a - 23 , 31a+46] -31 a + 46\bigr] y2+axy+ay=x3+x2+(15a23)x31a+46{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(15a-23\right){x}-31a+46
32.1-a3 32.1-a Q(2)\Q(\sqrt{2}) 25 2^{5} 0 Z/4Z\Z/4\Z 4-4 N(U(1))N(\mathrm{U}(1)) 11 13.7503716313.75037163 0.607686314 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 1 1 , 0] 0\bigr] y2=x3+x{y}^2={x}^{3}+{x}
32.1-a4 32.1-a Q(2)\Q(\sqrt{2}) 25 2^{5} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z 4-4 N(U(1))N(\mathrm{U}(1)) 11 27.5007432727.50074327 0.607686314 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 1 -1 , 0] 0\bigr] y2=x3x{y}^2={x}^{3}-{x}
32.1-a5 32.1-a Q(2)\Q(\sqrt{2}) 25 2^{5} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 16-16 N(U(1))N(\mathrm{U}(1)) 11 13.7503716313.75037163 0.607686314 287496 287496 [a \bigl[a , 1 1 , 0 0 , 2 -2 , 3] -3\bigr] y2+axy=x3+x22x3{y}^2+a{x}{y}={x}^{3}+{x}^{2}-2{x}-3
32.1-a6 32.1-a Q(2)\Q(\sqrt{2}) 25 2^{5} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z 16-16 N(U(1))N(\mathrm{U}(1)) 11 55.0014865455.00148654 0.607686314 287496 287496 [a \bigl[a , 1 1 , a a , 3 -3 , 0] 0\bigr] y2+axy+ay=x3+x23x{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-3{x}
32.1-a7 32.1-a Q(2)\Q(\sqrt{2}) 25 2^{5} 0 Z/2Z\Z/2\Z 64-64 N(U(1))N(\mathrm{U}(1)) 11 3.4375929093.437592909 0.607686314 29071392966a+41113158120 29071392966 a + 41113158120 [a \bigl[a , 1 1 , 0 0 , 15a22 -15 a - 22 , 46a69] -46 a - 69\bigr] y2+axy=x3+x2+(15a22)x46a69{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-15a-22\right){x}-46a-69
32.1-a8 32.1-a Q(2)\Q(\sqrt{2}) 25 2^{5} 0 Z/4Z\Z/4\Z 64-64 N(U(1))N(\mathrm{U}(1)) 11 27.5007432727.50074327 0.607686314 29071392966a+41113158120 29071392966 a + 41113158120 [a \bigl[a , 1 1 , a a , 15a23 -15 a - 23 , 31a+46] 31 a + 46\bigr] y2+axy+ay=x3+x2+(15a23)x+31a+46{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-15a-23\right){x}+31a+46
34.1-a1 34.1-a Q(2)\Q(\sqrt{2}) 217 2 \cdot 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.7900557342.790055734 0.493216832 97569932591257728a254559322212515456 -\frac{9756993259}{1257728} a - \frac{25455932221}{2515456} [a+1 \bigl[a + 1 , a1 a - 1 , a a , 16a+19 -16 a + 19 , 25a+31] -25 a + 31\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(16a+19)x25a+31{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-16a+19\right){x}-25a+31
34.1-a2 34.1-a Q(2)\Q(\sqrt{2}) 217 2 \cdot 17 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 25.1105016025.11050160 0.493216832 293904768a8089117136 \frac{2939047}{68} a - \frac{8089117}{136} [1 \bigl[1 , a1 a - 1 , 0 0 , 2a+4 2 a + 4 , 0] 0\bigr] y2+xy=x3+(a1)x2+(2a+4)x{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2a+4\right){x}
34.1-a3 34.1-a Q(2)\Q(\sqrt{2}) 217 2 \cdot 17 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 25.1105016025.11050160 0.493216832 60180906896571156a+4255433785057578 -\frac{6018090689657}{1156} a + \frac{4255433785057}{578} [1 \bigl[1 , a1 a - 1 , 0 0 , 8a16 -8 a - 16 , 10a4] -10 a - 4\bigr] y2+xy=x3+(a1)x2+(8a16)x10a4{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-8a-16\right){x}-10a-4
34.1-a4 34.1-a Q(2)\Q(\sqrt{2}) 217 2 \cdot 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.7900557342.790055734 0.493216832 130087595511310753772402208a+91987087285468997386201104 \frac{130087595511310753}{772402208} a + \frac{91987087285468997}{386201104} [a+1 \bigl[a + 1 , a1 a - 1 , a a , 64a141 64 a - 141 , 457a+479] -457 a + 479\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(64a141)x457a+479{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(64a-141\right){x}-457a+479
34.2-a1 34.2-a Q(2)\Q(\sqrt{2}) 217 2 \cdot 17 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 25.1105016025.11050160 0.493216832 293904768a8089117136 -\frac{2939047}{68} a - \frac{8089117}{136} [1 \bigl[1 , a1 -a - 1 , 0 0 , 2a+4 -2 a + 4 , 0] 0\bigr] y2+xy=x3+(a1)x2+(2a+4)x{y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a+4\right){x}
34.2-a2 34.2-a Q(2)\Q(\sqrt{2}) 217 2 \cdot 17 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.7900557342.790055734 0.493216832 97569932591257728a254559322212515456 \frac{9756993259}{1257728} a - \frac{25455932221}{2515456} [a+1 \bigl[a + 1 , a1 a - 1 , 0 0 , 15a+20 15 a + 20 , 44a+62] 44 a + 62\bigr] y2+(a+1)xy=x3+(a1)x2+(15a+20)x+44a+62{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(15a+20\right){x}+44a+62
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.