9.1-a1
9.1-a
4 4 4
10 10 1 0
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
9.1
3 2 3^{2} 3 2
3 20 3^{20} 3 2 0
0.43777 0.43777 0 . 4 3 7 7 7
( 3 ) (3) ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 5 2, 5 2 , 5
2B , 5B.1.2
1 1 1
2 2 2
1 1 1
1.266923342 1.266923342 1 . 2 6 6 9 2 3 3 4 2
0.223962521
− 873722816 59049 -\frac{873722816}{59049} − 5 9 0 4 9 8 7 3 7 2 2 8 1 6
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , a + 1 a + 1 a + 1 , − 40 a − 60 -40 a - 60 − 4 0 a − 6 0 , − 153 a − 220 ] -153 a - 220\bigr] − 1 5 3 a − 2 2 0 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 + ( − 40 a − 60 ) x − 153 a − 220 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-40a-60\right){x}-153a-220 y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 + ( − 4 0 a − 6 0 ) x − 1 5 3 a − 2 2 0
9.1-a2
9.1-a
4 4 4
10 10 1 0
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
9.1
3 2 3^{2} 3 2
3 4 3^{4} 3 4
0.43777 0.43777 0 . 4 3 7 7 7
( 3 ) (3) ( 3 )
0
Z / 10 Z \Z/10\Z Z / 1 0 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 5 2, 5 2 , 5
2B , 5B.1.1
1 1 1
2 2 2
1 1 1
31.67308356 31.67308356 3 1 . 6 7 3 0 8 3 5 6
0.223962521
64 9 \frac{64}{9} 9 6 4
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , a + 1 a + 1 a + 1 , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2} y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2
9.1-a3
9.1-a
4 4 4
10 10 1 0
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
9.1
3 2 3^{2} 3 2
3 2 3^{2} 3 2
0.43777 0.43777 0 . 4 3 7 7 7
( 3 ) (3) ( 3 )
0
Z / 10 Z \Z/10\Z Z / 1 0 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 5 2, 5 2 , 5
2B , 5B.1.1
1 1 1
1 1 1
1 1 1
63.34616712 63.34616712 6 3 . 3 4 6 1 6 7 1 2
0.223962521
85184 3 \frac{85184}{3} 3 8 5 1 8 4
[ a \bigl[a [ a , a a a , a + 1 a + 1 a + 1 , − 2 a − 3 -2 a - 3 − 2 a − 3 , 0 ] 0\bigr] 0 ]
y 2 + a x y + ( a + 1 ) y = x 3 + a x 2 + ( − 2 a − 3 ) x {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-2a-3\right){x} y 2 + a x y + ( a + 1 ) y = x 3 + a x 2 + ( − 2 a − 3 ) x
9.1-a4
9.1-a
4 4 4
10 10 1 0
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
9.1
3 2 3^{2} 3 2
3 10 3^{10} 3 1 0
0.43777 0.43777 0 . 4 3 7 7 7
( 3 ) (3) ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 5 2, 5 2 , 5
2B , 5B.1.2
1 1 1
1 1 1
1 1 1
2.533846685 2.533846685 2 . 5 3 3 8 4 6 6 8 5
0.223962521
58591911104 243 \frac{58591911104}{243} 2 4 3 5 8 5 9 1 9 1 1 1 0 4
[ a \bigl[a [ a , a a a , a + 1 a + 1 a + 1 , − 162 a − 243 -162 a - 243 − 1 6 2 a − 2 4 3 , − 1495 a − 2130 ] -1495 a - 2130\bigr] − 1 4 9 5 a − 2 1 3 0 ]
y 2 + a x y + ( a + 1 ) y = x 3 + a x 2 + ( − 162 a − 243 ) x − 1495 a − 2130 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-162a-243\right){x}-1495a-2130 y 2 + a x y + ( a + 1 ) y = x 3 + a x 2 + ( − 1 6 2 a − 2 4 3 ) x − 1 4 9 5 a − 2 1 3 0
17.1-a1
17.1-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.1
17 17 1 7
1 7 2 17^{2} 1 7 2
0.51321 0.51321 0 . 5 1 3 2 1
( − 3 a − 1 ) (-3a-1) ( − 3 a − 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
22.23161552 22.23161552 2 2 . 2 3 1 6 1 5 5 2
0.436670169
− 94464 289 a + 58688 289 -\frac{94464}{289} a + \frac{58688}{289} − 2 8 9 9 4 4 6 4 a + 2 8 9 5 8 6 8 8
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , − 2 a + 1 -2 a + 1 − 2 a + 1 , − a ] -a\bigr] − a ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − 2 a + 1 ) x − a {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a+1\right){x}-a y 2 + a x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − 2 a + 1 ) x − a
17.1-a2
17.1-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.1
17 17 1 7
1 7 6 17^{6} 1 7 6
0.51321 0.51321 0 . 5 1 3 2 1
( − 3 a − 1 ) (-3a-1) ( − 3 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
2.470179502 2.470179502 2 . 4 7 0 1 7 9 5 0 2
0.436670169
1522678220544 24137569 a − 2147745195712 24137569 \frac{1522678220544}{24137569} a - \frac{2147745195712}{24137569} 2 4 1 3 7 5 6 9 1 5 2 2 6 7 8 2 2 0 5 4 4 a − 2 4 1 3 7 5 6 9 2 1 4 7 7 4 5 1 9 5 7 1 2
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , 13 a − 19 13 a - 19 1 3 a − 1 9 , 47 a − 69 ] 47 a - 69\bigr] 4 7 a − 6 9 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( 13 a − 19 ) x + 47 a − 69 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(13a-19\right){x}+47a-69 y 2 + a x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( 1 3 a − 1 9 ) x + 4 7 a − 6 9
17.1-a3
17.1-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.1
17 17 1 7
1 7 3 17^{3} 1 7 3
0.51321 0.51321 0 . 5 1 3 2 1
( − 3 a − 1 ) (-3a-1) ( − 3 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
1 1 1
1 1 1
4.940359004 4.940359004 4 . 9 4 0 3 5 9 0 0 4
0.436670169
− 55615383938816 4913 a + 78652069441856 4913 -\frac{55615383938816}{4913} a + \frac{78652069441856}{4913} − 4 9 1 3 5 5 6 1 5 3 8 3 9 3 8 8 1 6 a + 4 9 1 3 7 8 6 5 2 0 6 9 4 4 1 8 5 6
[ a \bigl[a [ a , − 1 -1 − 1 , a + 1 a + 1 a + 1 , − 34 a − 53 -34 a - 53 − 3 4 a − 5 3 , − 113 a − 163 ] -113 a - 163\bigr] − 1 1 3 a − 1 6 3 ]
y 2 + a x y + ( a + 1 ) y = x 3 − x 2 + ( − 34 a − 53 ) x − 113 a − 163 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-34a-53\right){x}-113a-163 y 2 + a x y + ( a + 1 ) y = x 3 − x 2 + ( − 3 4 a − 5 3 ) x − 1 1 3 a − 1 6 3
17.1-a4
17.1-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.1
17 17 1 7
17 17 1 7
0.51321 0.51321 0 . 5 1 3 2 1
( − 3 a − 1 ) (-3a-1) ( − 3 a − 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
1 1 1
1 1 1
44.46323104 44.46323104 4 4 . 4 6 3 2 3 1 0 4
0.436670169
3690752 17 a + 5287232 17 \frac{3690752}{17} a + \frac{5287232}{17} 1 7 3 6 9 0 7 5 2 a + 1 7 5 2 8 7 2 3 2
[ a \bigl[a [ a , a + 1 a + 1 a + 1 , a + 1 a + 1 a + 1 , a − 1 a - 1 a − 1 , − 1 ] -1\bigr] − 1 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( a − 1 ) x − 1 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-1\right){x}-1 y 2 + a x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( a − 1 ) x − 1
17.2-a1
17.2-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.2
17 17 1 7
1 7 6 17^{6} 1 7 6
0.51321 0.51321 0 . 5 1 3 2 1
( 3 a − 1 ) (3a-1) ( 3 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
2.470179502 2.470179502 2 . 4 7 0 1 7 9 5 0 2
0.436670169
− 1522678220544 24137569 a − 2147745195712 24137569 -\frac{1522678220544}{24137569} a - \frac{2147745195712}{24137569} − 2 4 1 3 7 5 6 9 1 5 2 2 6 7 8 2 2 0 5 4 4 a − 2 4 1 3 7 5 6 9 2 1 4 7 7 4 5 1 9 5 7 1 2
[ a \bigl[a [ a , a + 1 a + 1 a + 1 , a + 1 a + 1 a + 1 , − 14 a − 19 -14 a - 19 − 1 4 a − 1 9 , − 48 a − 69 ] -48 a - 69\bigr] − 4 8 a − 6 9 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( − 14 a − 19 ) x − 48 a − 69 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-14a-19\right){x}-48a-69 y 2 + a x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( − 1 4 a − 1 9 ) x − 4 8 a − 6 9
17.2-a2
17.2-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.2
17 17 1 7
1 7 2 17^{2} 1 7 2
0.51321 0.51321 0 . 5 1 3 2 1
( 3 a − 1 ) (3a-1) ( 3 a − 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
22.23161552 22.23161552 2 2 . 2 3 1 6 1 5 5 2
0.436670169
94464 289 a + 58688 289 \frac{94464}{289} a + \frac{58688}{289} 2 8 9 9 4 4 6 4 a + 2 8 9 5 8 6 8 8
[ a \bigl[a [ a , a + 1 a + 1 a + 1 , a + 1 a + 1 a + 1 , a + 1 a + 1 a + 1 , 0 ] 0\bigr] 0 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( a + 1 ) x {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+1\right){x} y 2 + a x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( a + 1 ) x
17.2-a3
17.2-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.2
17 17 1 7
17 17 1 7
0.51321 0.51321 0 . 5 1 3 2 1
( 3 a − 1 ) (3a-1) ( 3 a − 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
1 1 1
1 1 1
44.46323104 44.46323104 4 4 . 4 6 3 2 3 1 0 4
0.436670169
− 3690752 17 a + 5287232 17 -\frac{3690752}{17} a + \frac{5287232}{17} − 1 7 3 6 9 0 7 5 2 a + 1 7 5 2 8 7 2 3 2
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , − 2 a − 1 -2 a - 1 − 2 a − 1 , − a − 1 ] -a - 1\bigr] − a − 1 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − 2 a − 1 ) x − a − 1 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a-1\right){x}-a-1 y 2 + a x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − 2 a − 1 ) x − a − 1
17.2-a4
17.2-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
17.2
17 17 1 7
1 7 3 17^{3} 1 7 3
0.51321 0.51321 0 . 5 1 3 2 1
( 3 a − 1 ) (3a-1) ( 3 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
1 1 1
1 1 1
4.940359004 4.940359004 4 . 9 4 0 3 5 9 0 0 4
0.436670169
55615383938816 4913 a + 78652069441856 4913 \frac{55615383938816}{4913} a + \frac{78652069441856}{4913} 4 9 1 3 5 5 6 1 5 3 8 3 9 3 8 8 1 6 a + 4 9 1 3 7 8 6 5 2 0 6 9 4 4 1 8 5 6
[ a \bigl[a [ a , − 1 -1 − 1 , a + 1 a + 1 a + 1 , 33 a − 53 33 a - 53 3 3 a − 5 3 , 112 a − 163 ] 112 a - 163\bigr] 1 1 2 a − 1 6 3 ]
y 2 + a x y + ( a + 1 ) y = x 3 − x 2 + ( 33 a − 53 ) x + 112 a − 163 {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(33a-53\right){x}+112a-163 y 2 + a x y + ( a + 1 ) y = x 3 − x 2 + ( 3 3 a − 5 3 ) x + 1 1 2 a − 1 6 3
28.1-a1
28.1-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.1
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
− 2 8 ⋅ 7 12 - 2^{8} \cdot 7^{12} − 2 8 ⋅ 7 1 2
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( − 2 a + 1 ) (a), (-2a+1) ( a ) , ( − 2 a + 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
2.155441053 2.155441053 2 . 1 5 5 4 4 1 0 5 3
0.571547619
− 29518306565684 13841287201 a + 41622722395132 13841287201 -\frac{29518306565684}{13841287201} a + \frac{41622722395132}{13841287201} − 1 3 8 4 1 2 8 7 2 0 1 2 9 5 1 8 3 0 6 5 6 5 6 8 4 a + 1 3 8 4 1 2 8 7 2 0 1 4 1 6 2 2 7 2 2 3 9 5 1 3 2
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , 0 0 0 , − 9 a − 18 -9 a - 18 − 9 a − 1 8 , − 320 a − 467 ] -320 a - 467\bigr] − 3 2 0 a − 4 6 7 ]
y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( − 9 a − 18 ) x − 320 a − 467 {y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-9a-18\right){x}-320a-467 y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( − 9 a − 1 8 ) x − 3 2 0 a − 4 6 7
28.1-a2
28.1-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.1
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
− 2 8 ⋅ 7 4 - 2^{8} \cdot 7^{4} − 2 8 ⋅ 7 4
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( − 2 a + 1 ) (a), (-2a+1) ( a ) , ( − 2 a + 1 )
0
Z / 12 Z \Z/12\Z Z / 1 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
19.39896948 19.39896948 1 9 . 3 9 8 9 6 9 4 8
0.571547619
− 861093316 2401 a + 1217791012 2401 -\frac{861093316}{2401} a + \frac{1217791012}{2401} − 2 4 0 1 8 6 1 0 9 3 3 1 6 a + 2 4 0 1 1 2 1 7 7 9 1 0 1 2
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , 0 0 0 , a + 2 a + 2 a + 2 , 12 a + 17 ] 12 a + 17\bigr] 1 2 a + 1 7 ]
y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( a + 2 ) x + 12 a + 17 {y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(a+2\right){x}+12a+17 y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( a + 2 ) x + 1 2 a + 1 7
28.1-a3
28.1-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.1
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 8 ⋅ 7 3 2^{8} \cdot 7^{3} 2 8 ⋅ 7 3
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( − 2 a + 1 ) (a), (-2a+1) ( a ) , ( − 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
3 3 3
1 1 1
2.155441053 2.155441053 2 . 1 5 5 4 4 1 0 5 3
0.571547619
− 91481168031853524 343 a + 129373908533024396 343 -\frac{91481168031853524}{343} a + \frac{129373908533024396}{343} − 3 4 3 9 1 4 8 1 1 6 8 0 3 1 8 5 3 5 2 4 a + 3 4 3 1 2 9 3 7 3 9 0 8 5 3 3 0 2 4 3 9 6
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , 0 0 0 , − 19 a − 148 -19 a - 148 − 1 9 a − 1 4 8 , 318 a − 201 ] 318 a - 201\bigr] 3 1 8 a − 2 0 1 ]
y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( − 19 a − 148 ) x + 318 a − 201 {y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-19a-148\right){x}+318a-201 y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( − 1 9 a − 1 4 8 ) x + 3 1 8 a − 2 0 1
28.1-a4
28.1-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.1
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
− 2 8 ⋅ 7 - 2^{8} \cdot 7 − 2 8 ⋅ 7
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( − 2 a + 1 ) (a), (-2a+1) ( a ) , ( − 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
3 3 3
1 1 1
19.39896948 19.39896948 1 9 . 3 9 8 9 6 9 4 8
0.571547619
4096 7 a + 16384 7 \frac{4096}{7} a + \frac{16384}{7} 7 4 0 9 6 a + 7 1 6 3 8 4
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 2 a + 3 -2 a + 3 − 2 a + 3 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x 2 + ( − 2 a + 3 ) x {y}^2={x}^{3}-{x}^{2}+\left(-2a+3\right){x} y 2 = x 3 − x 2 + ( − 2 a + 3 ) x
28.1-a5
28.1-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.1
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 4 ⋅ 7 2 2^{4} \cdot 7^{2} 2 4 ⋅ 7 2
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( − 2 a + 1 ) (a), (-2a+1) ( a ) , ( − 2 a + 1 )
0
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z\oplus\Z/6\Z Z / 2 Z ⊕ Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2Cs , 3B.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
38.79793896 38.79793896 3 8 . 7 9 7 9 3 8 9 6
0.571547619
435744 49 a + 712688 49 \frac{435744}{49} a + \frac{712688}{49} 4 9 4 3 5 7 4 4 a + 4 9 7 1 2 6 8 8
[ a \bigl[a [ a , − 1 -1 − 1 , a a a , 2 a − 4 2 a - 4 2 a − 4 , − a + 1 ] -a + 1\bigr] − a + 1 ]
y 2 + a x y + a y = x 3 − x 2 + ( 2 a − 4 ) x − a + 1 {y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(2a-4\right){x}-a+1 y 2 + a x y + a y = x 3 − x 2 + ( 2 a − 4 ) x − a + 1
28.1-a6
28.1-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.1
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 4 ⋅ 7 6 2^{4} \cdot 7^{6} 2 4 ⋅ 7 6
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( − 2 a + 1 ) (a), (-2a+1) ( a ) , ( − 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2Cs , 3B.1.2
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
4.310882107 4.310882107 4 . 3 1 0 8 8 2 1 0 7
0.571547619
− 1137747277344 117649 a + 1622386617968 117649 -\frac{1137747277344}{117649} a + \frac{1622386617968}{117649} − 1 1 7 6 4 9 1 1 3 7 7 4 7 2 7 7 3 4 4 a + 1 1 7 6 4 9 1 6 2 2 3 8 6 6 1 7 9 6 8
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , 0 0 0 , − 34 a − 53 -34 a - 53 − 3 4 a − 5 3 , − 133 a − 203 ] -133 a - 203\bigr] − 1 3 3 a − 2 0 3 ]
y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( − 34 a − 53 ) x − 133 a − 203 {y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-34a-53\right){x}-133a-203 y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( − 3 4 a − 5 3 ) x − 1 3 3 a − 2 0 3
28.1-a7
28.1-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.1
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 8 ⋅ 7 2^{8} \cdot 7 2 8 ⋅ 7
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( − 2 a + 1 ) (a), (-2a+1) ( a ) , ( − 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
3 3 3
1 1 1
19.39896948 19.39896948 1 9 . 3 9 8 9 6 9 4 8
0.571547619
1720664028 7 a + 2434028852 7 \frac{1720664028}{7} a + \frac{2434028852}{7} 7 1 7 2 0 6 6 4 0 2 8 a + 7 2 4 3 4 0 2 8 8 5 2
[ a \bigl[a [ a , − 1 -1 − 1 , a a a , 17 a − 29 17 a - 29 1 7 a − 2 9 , 49 a − 66 ] 49 a - 66\bigr] 4 9 a − 6 6 ]
y 2 + a x y + a y = x 3 − x 2 + ( 17 a − 29 ) x + 49 a − 66 {y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(17a-29\right){x}+49a-66 y 2 + a x y + a y = x 3 − x 2 + ( 1 7 a − 2 9 ) x + 4 9 a − 6 6
28.1-a8
28.1-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.1
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
− 2 8 ⋅ 7 3 - 2^{8} \cdot 7^{3} − 2 8 ⋅ 7 3
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( − 2 a + 1 ) (a), (-2a+1) ( a ) , ( − 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
3 3 3
1 1 1
2.155441053 2.155441053 2 . 1 5 5 4 4 1 0 5 3
0.571547619
1545435312128 343 a + 2185574023168 343 \frac{1545435312128}{343} a + \frac{2185574023168}{343} 3 4 3 1 5 4 5 4 3 5 3 1 2 1 2 8 a + 3 4 3 2 1 8 5 5 7 4 0 2 3 1 6 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 18 a − 37 18 a - 37 1 8 a − 3 7 , 68 a − 108 ] 68 a - 108\bigr] 6 8 a − 1 0 8 ]
y 2 = x 3 − x 2 + ( 18 a − 37 ) x + 68 a − 108 {y}^2={x}^{3}-{x}^{2}+\left(18a-37\right){x}+68a-108 y 2 = x 3 − x 2 + ( 1 8 a − 3 7 ) x + 6 8 a − 1 0 8
28.2-a1
28.2-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
− 2 8 ⋅ 7 3 - 2^{8} \cdot 7^{3} − 2 8 ⋅ 7 3
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( 2 a + 1 ) (a), (2a+1) ( a ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
3 3 3
1 1 1
2.155441053 2.155441053 2 . 1 5 5 4 4 1 0 5 3
0.571547619
− 1545435312128 343 a + 2185574023168 343 -\frac{1545435312128}{343} a + \frac{2185574023168}{343} − 3 4 3 1 5 4 5 4 3 5 3 1 2 1 2 8 a + 3 4 3 2 1 8 5 5 7 4 0 2 3 1 6 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 18 a − 37 -18 a - 37 − 1 8 a − 3 7 , − 68 a − 108 ] -68 a - 108\bigr] − 6 8 a − 1 0 8 ]
y 2 = x 3 − x 2 + ( − 18 a − 37 ) x − 68 a − 108 {y}^2={x}^{3}-{x}^{2}+\left(-18a-37\right){x}-68a-108 y 2 = x 3 − x 2 + ( − 1 8 a − 3 7 ) x − 6 8 a − 1 0 8
28.2-a2
28.2-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
− 2 8 ⋅ 7 - 2^{8} \cdot 7 − 2 8 ⋅ 7
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( 2 a + 1 ) (a), (2a+1) ( a ) , ( 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
3 3 3
1 1 1
19.39896948 19.39896948 1 9 . 3 9 8 9 6 9 4 8
0.571547619
− 4096 7 a + 16384 7 -\frac{4096}{7} a + \frac{16384}{7} − 7 4 0 9 6 a + 7 1 6 3 8 4
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 2 a + 3 2 a + 3 2 a + 3 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x 2 + ( 2 a + 3 ) x {y}^2={x}^{3}-{x}^{2}+\left(2a+3\right){x} y 2 = x 3 − x 2 + ( 2 a + 3 ) x
28.2-a3
28.2-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 4 ⋅ 7 2 2^{4} \cdot 7^{2} 2 4 ⋅ 7 2
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( 2 a + 1 ) (a), (2a+1) ( a ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z\oplus\Z/6\Z Z / 2 Z ⊕ Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2Cs , 3B.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
38.79793896 38.79793896 3 8 . 7 9 7 9 3 8 9 6
0.571547619
− 435744 49 a + 712688 49 -\frac{435744}{49} a + \frac{712688}{49} − 4 9 4 3 5 7 4 4 a + 4 9 7 1 2 6 8 8
[ a \bigl[a [ a , − 1 -1 − 1 , a a a , − 2 a − 4 -2 a - 4 − 2 a − 4 , a + 1 ] a + 1\bigr] a + 1 ]
y 2 + a x y + a y = x 3 − x 2 + ( − 2 a − 4 ) x + a + 1 {y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-2a-4\right){x}+a+1 y 2 + a x y + a y = x 3 − x 2 + ( − 2 a − 4 ) x + a + 1
28.2-a4
28.2-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
− 2 8 ⋅ 7 12 - 2^{8} \cdot 7^{12} − 2 8 ⋅ 7 1 2
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( 2 a + 1 ) (a), (2a+1) ( a ) , ( 2 a + 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
2.155441053 2.155441053 2 . 1 5 5 4 4 1 0 5 3
0.571547619
29518306565684 13841287201 a + 41622722395132 13841287201 \frac{29518306565684}{13841287201} a + \frac{41622722395132}{13841287201} 1 3 8 4 1 2 8 7 2 0 1 2 9 5 1 8 3 0 6 5 6 5 6 8 4 a + 1 3 8 4 1 2 8 7 2 0 1 4 1 6 2 2 7 2 2 3 9 5 1 3 2
[ a \bigl[a [ a , a + 1 a + 1 a + 1 , 0 0 0 , 9 a − 18 9 a - 18 9 a − 1 8 , 320 a − 467 ] 320 a - 467\bigr] 3 2 0 a − 4 6 7 ]
y 2 + a x y = x 3 + ( a + 1 ) x 2 + ( 9 a − 18 ) x + 320 a − 467 {y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(9a-18\right){x}+320a-467 y 2 + a x y = x 3 + ( a + 1 ) x 2 + ( 9 a − 1 8 ) x + 3 2 0 a − 4 6 7
28.2-a5
28.2-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 8 ⋅ 7 2^{8} \cdot 7 2 8 ⋅ 7
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( 2 a + 1 ) (a), (2a+1) ( a ) , ( 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
3 3 3
1 1 1
19.39896948 19.39896948 1 9 . 3 9 8 9 6 9 4 8
0.571547619
− 1720664028 7 a + 2434028852 7 -\frac{1720664028}{7} a + \frac{2434028852}{7} − 7 1 7 2 0 6 6 4 0 2 8 a + 7 2 4 3 4 0 2 8 8 5 2
[ a \bigl[a [ a , − 1 -1 − 1 , a a a , − 17 a − 29 -17 a - 29 − 1 7 a − 2 9 , − 49 a − 66 ] -49 a - 66\bigr] − 4 9 a − 6 6 ]
y 2 + a x y + a y = x 3 − x 2 + ( − 17 a − 29 ) x − 49 a − 66 {y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-17a-29\right){x}-49a-66 y 2 + a x y + a y = x 3 − x 2 + ( − 1 7 a − 2 9 ) x − 4 9 a − 6 6
28.2-a6
28.2-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
− 2 8 ⋅ 7 4 - 2^{8} \cdot 7^{4} − 2 8 ⋅ 7 4
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( 2 a + 1 ) (a), (2a+1) ( a ) , ( 2 a + 1 )
0
Z / 12 Z \Z/12\Z Z / 1 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
19.39896948 19.39896948 1 9 . 3 9 8 9 6 9 4 8
0.571547619
861093316 2401 a + 1217791012 2401 \frac{861093316}{2401} a + \frac{1217791012}{2401} 2 4 0 1 8 6 1 0 9 3 3 1 6 a + 2 4 0 1 1 2 1 7 7 9 1 0 1 2
[ a \bigl[a [ a , a + 1 a + 1 a + 1 , 0 0 0 , − a + 2 -a + 2 − a + 2 , − 12 a + 17 ] -12 a + 17\bigr] − 1 2 a + 1 7 ]
y 2 + a x y = x 3 + ( a + 1 ) x 2 + ( − a + 2 ) x − 12 a + 17 {y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-a+2\right){x}-12a+17 y 2 + a x y = x 3 + ( a + 1 ) x 2 + ( − a + 2 ) x − 1 2 a + 1 7
28.2-a7
28.2-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 4 ⋅ 7 6 2^{4} \cdot 7^{6} 2 4 ⋅ 7 6
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( 2 a + 1 ) (a), (2a+1) ( a ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2Cs , 3B.1.2
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
4.310882107 4.310882107 4 . 3 1 0 8 8 2 1 0 7
0.571547619
1137747277344 117649 a + 1622386617968 117649 \frac{1137747277344}{117649} a + \frac{1622386617968}{117649} 1 1 7 6 4 9 1 1 3 7 7 4 7 2 7 7 3 4 4 a + 1 1 7 6 4 9 1 6 2 2 3 8 6 6 1 7 9 6 8
[ a \bigl[a [ a , a + 1 a + 1 a + 1 , 0 0 0 , 34 a − 53 34 a - 53 3 4 a − 5 3 , 133 a − 203 ] 133 a - 203\bigr] 1 3 3 a − 2 0 3 ]
y 2 + a x y = x 3 + ( a + 1 ) x 2 + ( 34 a − 53 ) x + 133 a − 203 {y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(34a-53\right){x}+133a-203 y 2 + a x y = x 3 + ( a + 1 ) x 2 + ( 3 4 a − 5 3 ) x + 1 3 3 a − 2 0 3
28.2-a8
28.2-a
8 8 8
12 12 1 2
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 8 ⋅ 7 3 2^{8} \cdot 7^{3} 2 8 ⋅ 7 3
0.58140 0.58140 0 . 5 8 1 4 0
( a ) , ( 2 a + 1 ) (a), (2a+1) ( a ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
3 3 3
1 1 1
2.155441053 2.155441053 2 . 1 5 5 4 4 1 0 5 3
0.571547619
91481168031853524 343 a + 129373908533024396 343 \frac{91481168031853524}{343} a + \frac{129373908533024396}{343} 3 4 3 9 1 4 8 1 1 6 8 0 3 1 8 5 3 5 2 4 a + 3 4 3 1 2 9 3 7 3 9 0 8 5 3 3 0 2 4 3 9 6
[ a \bigl[a [ a , a + 1 a + 1 a + 1 , 0 0 0 , 19 a − 148 19 a - 148 1 9 a − 1 4 8 , − 318 a − 201 ] -318 a - 201\bigr] − 3 1 8 a − 2 0 1 ]
y 2 + a x y = x 3 + ( a + 1 ) x 2 + ( 19 a − 148 ) x − 318 a − 201 {y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(19a-148\right){x}-318a-201 y 2 + a x y = x 3 + ( a + 1 ) x 2 + ( 1 9 a − 1 4 8 ) x − 3 1 8 a − 2 0 1
31.1-a1
31.1-a
4 4 4
4 4 4
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.1
31 31 3 1
− 3 1 4 - 31^{4} − 3 1 4
0.59638 0.59638 0 . 5 9 6 3 8
( − 4 a − 1 ) (-4a-1) ( − 4 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
2.544454463 2.544454463 2 . 5 4 4 4 5 4 4 6 3
0.449800251
− 78588372777605 923521 a + 111138046783591 923521 -\frac{78588372777605}{923521} a + \frac{111138046783591}{923521} − 9 2 3 5 2 1 7 8 5 8 8 3 7 2 7 7 7 6 0 5 a + 9 2 3 5 2 1 1 1 1 1 3 8 0 4 6 7 8 3 5 9 1
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , − 7 a − 21 -7 a - 21 − 7 a − 2 1 , − 31 a − 52 ] -31 a - 52\bigr] − 3 1 a − 5 2 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 7 a − 21 ) x − 31 a − 52 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-7a-21\right){x}-31a-52 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 7 a − 2 1 ) x − 3 1 a − 5 2
31.1-a2
31.1-a
4 4 4
4 4 4
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.1
31 31 3 1
− 31 -31 − 3 1
0.59638 0.59638 0 . 5 9 6 3 8
( − 4 a − 1 ) (-4a-1) ( − 4 a − 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
20.35563570 20.35563570 2 0 . 3 5 5 6 3 5 7 0
0.449800251
47780 31 a + 69151 31 \frac{47780}{31} a + \frac{69151}{31} 3 1 4 7 7 8 0 a + 3 1 6 9 1 5 1
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , − 2 a − 1 -2 a - 1 − 2 a − 1 , − a − 2 ] -a - 2\bigr] − a − 2 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 2 a − 1 ) x − a − 2 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a-1\right){x}-a-2 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 2 a − 1 ) x − a − 2
31.1-a3
31.1-a
4 4 4
4 4 4
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.1
31 31 3 1
3 1 2 31^{2} 3 1 2
0.59638 0.59638 0 . 5 9 6 3 8
( − 4 a − 1 ) (-4a-1) ( − 4 a − 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
10.17781785 10.17781785 1 0 . 1 7 7 8 1 7 8 5
0.449800251
4423034250 961 a + 6270751283 961 \frac{4423034250}{961} a + \frac{6270751283}{961} 9 6 1 4 4 2 3 0 3 4 2 5 0 a + 9 6 1 6 2 7 0 7 5 1 2 8 3
[ 1 \bigl[1 [ 1 , − a − 1 -a - 1 − a − 1 , 1 1 1 , 10 a − 14 10 a - 14 1 0 a − 1 4 , 21 a − 30 ] 21 a - 30\bigr] 2 1 a − 3 0 ]
y 2 + x y + y = x 3 + ( − a − 1 ) x 2 + ( 10 a − 14 ) x + 21 a − 30 {y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(10a-14\right){x}+21a-30 y 2 + x y + y = x 3 + ( − a − 1 ) x 2 + ( 1 0 a − 1 4 ) x + 2 1 a − 3 0
31.1-a4
31.1-a
4 4 4
4 4 4
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.1
31 31 3 1
31 31 3 1
0.59638 0.59638 0 . 5 9 6 3 8
( − 4 a − 1 ) (-4a-1) ( − 4 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
5.088908926 5.088908926 5 . 0 8 8 9 0 8 9 2 6
0.449800251
1861812264958875 31 a + 2633000155833143 31 \frac{1861812264958875}{31} a + \frac{2633000155833143}{31} 3 1 1 8 6 1 8 1 2 2 6 4 9 5 8 8 7 5 a + 3 1 2 6 3 3 0 0 0 1 5 5 8 3 3 1 4 3
[ 1 \bigl[1 [ 1 , − a − 1 -a - 1 − a − 1 , 1 1 1 , 25 a − 49 25 a - 49 2 5 a − 4 9 , − 79 a + 100 ] -79 a + 100\bigr] − 7 9 a + 1 0 0 ]
y 2 + x y + y = x 3 + ( − a − 1 ) x 2 + ( 25 a − 49 ) x − 79 a + 100 {y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(25a-49\right){x}-79a+100 y 2 + x y + y = x 3 + ( − a − 1 ) x 2 + ( 2 5 a − 4 9 ) x − 7 9 a + 1 0 0
31.2-a1
31.2-a
4 4 4
4 4 4
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.2
31 31 3 1
− 31 -31 − 3 1
0.59638 0.59638 0 . 5 9 6 3 8
( 4 a − 1 ) (4a-1) ( 4 a − 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
20.35563570 20.35563570 2 0 . 3 5 5 6 3 5 7 0
0.449800251
− 47780 31 a + 69151 31 -\frac{47780}{31} a + \frac{69151}{31} − 3 1 4 7 7 8 0 a + 3 1 6 9 1 5 1
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , 1 1 1 , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + ( a + 1 ) x y + y = x 3 + ( a − 1 ) x 2 {y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2} y 2 + ( a + 1 ) x y + y = x 3 + ( a − 1 ) x 2
31.2-a2
31.2-a
4 4 4
4 4 4
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.2
31 31 3 1
31 31 3 1
0.59638 0.59638 0 . 5 9 6 3 8
( 4 a − 1 ) (4a-1) ( 4 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
5.088908926 5.088908926 5 . 0 8 8 9 0 8 9 2 6
0.449800251
− 1861812264958875 31 a + 2633000155833143 31 -\frac{1861812264958875}{31} a + \frac{2633000155833143}{31} − 3 1 1 8 6 1 8 1 2 2 6 4 9 5 8 8 7 5 a + 3 1 2 6 3 3 0 0 0 1 5 5 8 3 3 1 4 3
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 1 1 1 , − 25 a − 49 -25 a - 49 − 2 5 a − 4 9 , 79 a + 100 ] 79 a + 100\bigr] 7 9 a + 1 0 0 ]
y 2 + x y + y = x 3 + ( a − 1 ) x 2 + ( − 25 a − 49 ) x + 79 a + 100 {y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-25a-49\right){x}+79a+100 y 2 + x y + y = x 3 + ( a − 1 ) x 2 + ( − 2 5 a − 4 9 ) x + 7 9 a + 1 0 0
31.2-a3
31.2-a
4 4 4
4 4 4
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.2
31 31 3 1
3 1 2 31^{2} 3 1 2
0.59638 0.59638 0 . 5 9 6 3 8
( 4 a − 1 ) (4a-1) ( 4 a − 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
10.17781785 10.17781785 1 0 . 1 7 7 8 1 7 8 5
0.449800251
− 4423034250 961 a + 6270751283 961 -\frac{4423034250}{961} a + \frac{6270751283}{961} − 9 6 1 4 4 2 3 0 3 4 2 5 0 a + 9 6 1 6 2 7 0 7 5 1 2 8 3
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 1 1 1 , − 10 a − 14 -10 a - 14 − 1 0 a − 1 4 , − 21 a − 30 ] -21 a - 30\bigr] − 2 1 a − 3 0 ]
y 2 + x y + y = x 3 + ( a − 1 ) x 2 + ( − 10 a − 14 ) x − 21 a − 30 {y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-10a-14\right){x}-21a-30 y 2 + x y + y = x 3 + ( a − 1 ) x 2 + ( − 1 0 a − 1 4 ) x − 2 1 a − 3 0
31.2-a4
31.2-a
4 4 4
4 4 4
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.2
31 31 3 1
− 3 1 4 - 31^{4} − 3 1 4
0.59638 0.59638 0 . 5 9 6 3 8
( 4 a − 1 ) (4a-1) ( 4 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
2.544454463 2.544454463 2 . 5 4 4 4 5 4 4 6 3
0.449800251
78588372777605 923521 a + 111138046783591 923521 \frac{78588372777605}{923521} a + \frac{111138046783591}{923521} 9 2 3 5 2 1 7 8 5 8 8 3 7 2 7 7 7 6 0 5 a + 9 2 3 5 2 1 1 1 1 1 3 8 0 4 6 7 8 3 5 9 1
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , 1 1 1 , 5 a − 20 5 a - 20 5 a − 2 0 , 10 a − 40 ] 10 a - 40\bigr] 1 0 a − 4 0 ]
y 2 + ( a + 1 ) x y + y = x 3 + ( a − 1 ) x 2 + ( 5 a − 20 ) x + 10 a − 40 {y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5a-20\right){x}+10a-40 y 2 + ( a + 1 ) x y + y = x 3 + ( a − 1 ) x 2 + ( 5 a − 2 0 ) x + 1 0 a − 4 0
32.1-a1
32.1-a
8 8 8
16 16 1 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
32.1
2 5 2^{5} 2 5
− 2 9 - 2^{9} − 2 9
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 64 -64 − 6 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
1 1 1
2 2 2
1 1 1
3.437592909 3.437592909 3 . 4 3 7 5 9 2 9 0 9
0.607686314
− 29071392966 a + 41113158120 -29071392966 a + 41113158120 − 2 9 0 7 1 3 9 2 9 6 6 a + 4 1 1 1 3 1 5 8 1 2 0
[ a \bigl[a [ a , 1 1 1 , 0 0 0 , 15 a − 22 15 a - 22 1 5 a − 2 2 , 46 a − 69 ] 46 a - 69\bigr] 4 6 a − 6 9 ]
y 2 + a x y = x 3 + x 2 + ( 15 a − 22 ) x + 46 a − 69 {y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(15a-22\right){x}+46a-69 y 2 + a x y = x 3 + x 2 + ( 1 5 a − 2 2 ) x + 4 6 a − 6 9
32.1-a2
32.1-a
8 8 8
16 16 1 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
32.1
2 5 2^{5} 2 5
− 2 9 - 2^{9} − 2 9
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
potential \textsf{potential} potential
− 64 -64 − 6 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
1 1 1
1 1 1
1 1 1
27.50074327 27.50074327 2 7 . 5 0 0 7 4 3 2 7
0.607686314
− 29071392966 a + 41113158120 -29071392966 a + 41113158120 − 2 9 0 7 1 3 9 2 9 6 6 a + 4 1 1 1 3 1 5 8 1 2 0
[ a \bigl[a [ a , 1 1 1 , a a a , 15 a − 23 15 a - 23 1 5 a − 2 3 , − 31 a + 46 ] -31 a + 46\bigr] − 3 1 a + 4 6 ]
y 2 + a x y + a y = x 3 + x 2 + ( 15 a − 23 ) x − 31 a + 46 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(15a-23\right){x}-31a+46 y 2 + a x y + a y = x 3 + x 2 + ( 1 5 a − 2 3 ) x − 3 1 a + 4 6
32.1-a3
32.1-a
8 8 8
16 16 1 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
32.1
2 5 2^{5} 2 5
2 12 2^{12} 2 1 2
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
potential \textsf{potential} potential
− 4 -4 − 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
1 1 1
2 2 2
1 1 1
13.75037163 13.75037163 1 3 . 7 5 0 3 7 1 6 3
0.607686314
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + x {y}^2={x}^{3}+{x} y 2 = x 3 + x
32.1-a4
32.1-a
8 8 8
16 16 1 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
32.1
2 5 2^{5} 2 5
2 12 2^{12} 2 1 2
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
potential \textsf{potential} potential
− 4 -4 − 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
27.50074327 27.50074327 2 7 . 5 0 0 7 4 3 2 7
0.607686314
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x {y}^2={x}^{3}-{x} y 2 = x 3 − x
32.1-a5
32.1-a
8 8 8
16 16 1 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
32.1
2 5 2^{5} 2 5
2 6 2^{6} 2 6
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
potential \textsf{potential} potential
− 16 -16 − 1 6
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
13.75037163 13.75037163 1 3 . 7 5 0 3 7 1 6 3
0.607686314
287496 287496 2 8 7 4 9 6
[ a \bigl[a [ a , 1 1 1 , 0 0 0 , − 2 -2 − 2 , − 3 ] -3\bigr] − 3 ]
y 2 + a x y = x 3 + x 2 − 2 x − 3 {y}^2+a{x}{y}={x}^{3}+{x}^{2}-2{x}-3 y 2 + a x y = x 3 + x 2 − 2 x − 3
32.1-a6
32.1-a
8 8 8
16 16 1 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
32.1
2 5 2^{5} 2 5
2 6 2^{6} 2 6
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
potential \textsf{potential} potential
− 16 -16 − 1 6
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
55.00148654 55.00148654 5 5 . 0 0 1 4 8 6 5 4
0.607686314
287496 287496 2 8 7 4 9 6
[ a \bigl[a [ a , 1 1 1 , a a a , − 3 -3 − 3 , 0 ] 0\bigr] 0 ]
y 2 + a x y + a y = x 3 + x 2 − 3 x {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-3{x} y 2 + a x y + a y = x 3 + x 2 − 3 x
32.1-a7
32.1-a
8 8 8
16 16 1 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
32.1
2 5 2^{5} 2 5
− 2 9 - 2^{9} − 2 9
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 64 -64 − 6 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
1 1 1
2 2 2
1 1 1
3.437592909 3.437592909 3 . 4 3 7 5 9 2 9 0 9
0.607686314
29071392966 a + 41113158120 29071392966 a + 41113158120 2 9 0 7 1 3 9 2 9 6 6 a + 4 1 1 1 3 1 5 8 1 2 0
[ a \bigl[a [ a , 1 1 1 , 0 0 0 , − 15 a − 22 -15 a - 22 − 1 5 a − 2 2 , − 46 a − 69 ] -46 a - 69\bigr] − 4 6 a − 6 9 ]
y 2 + a x y = x 3 + x 2 + ( − 15 a − 22 ) x − 46 a − 69 {y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-15a-22\right){x}-46a-69 y 2 + a x y = x 3 + x 2 + ( − 1 5 a − 2 2 ) x − 4 6 a − 6 9
32.1-a8
32.1-a
8 8 8
16 16 1 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
32.1
2 5 2^{5} 2 5
− 2 9 - 2^{9} − 2 9
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
potential \textsf{potential} potential
− 64 -64 − 6 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
1 1 1
1 1 1
1 1 1
27.50074327 27.50074327 2 7 . 5 0 0 7 4 3 2 7
0.607686314
29071392966 a + 41113158120 29071392966 a + 41113158120 2 9 0 7 1 3 9 2 9 6 6 a + 4 1 1 1 3 1 5 8 1 2 0
[ a \bigl[a [ a , 1 1 1 , a a a , − 15 a − 23 -15 a - 23 − 1 5 a − 2 3 , 31 a + 46 ] 31 a + 46\bigr] 3 1 a + 4 6 ]
y 2 + a x y + a y = x 3 + x 2 + ( − 15 a − 23 ) x + 31 a + 46 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-15a-23\right){x}+31a+46 y 2 + a x y + a y = x 3 + x 2 + ( − 1 5 a − 2 3 ) x + 3 1 a + 4 6
34.1-a1
34.1-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
34.1
2 ⋅ 17 2 \cdot 17 2 ⋅ 1 7
2 18 ⋅ 1 7 3 2^{18} \cdot 17^{3} 2 1 8 ⋅ 1 7 3
0.61031 0.61031 0 . 6 1 0 3 1
( a ) , ( − 3 a − 1 ) (a), (-3a-1) ( a ) , ( − 3 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
2.790055734 2.790055734 2 . 7 9 0 0 5 5 7 3 4
0.493216832
− 9756993259 1257728 a − 25455932221 2515456 -\frac{9756993259}{1257728} a - \frac{25455932221}{2515456} − 1 2 5 7 7 2 8 9 7 5 6 9 9 3 2 5 9 a − 2 5 1 5 4 5 6 2 5 4 5 5 9 3 2 2 2 1
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , a a a , − 16 a + 19 -16 a + 19 − 1 6 a + 1 9 , − 25 a + 31 ] -25 a + 31\bigr] − 2 5 a + 3 1 ]
y 2 + ( a + 1 ) x y + a y = x 3 + ( a − 1 ) x 2 + ( − 16 a + 19 ) x − 25 a + 31 {y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-16a+19\right){x}-25a+31 y 2 + ( a + 1 ) x y + a y = x 3 + ( a − 1 ) x 2 + ( − 1 6 a + 1 9 ) x − 2 5 a + 3 1
34.1-a2
34.1-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
34.1
2 ⋅ 17 2 \cdot 17 2 ⋅ 1 7
2 6 ⋅ 17 2^{6} \cdot 17 2 6 ⋅ 1 7
0.61031 0.61031 0 . 6 1 0 3 1
( a ) , ( − 3 a − 1 ) (a), (-3a-1) ( a ) , ( − 3 a − 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
25.11050160 25.11050160 2 5 . 1 1 0 5 0 1 6 0
0.493216832
2939047 68 a − 8089117 136 \frac{2939047}{68} a - \frac{8089117}{136} 6 8 2 9 3 9 0 4 7 a − 1 3 6 8 0 8 9 1 1 7
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 0 0 0 , 2 a + 4 2 a + 4 2 a + 4 , 0 ] 0\bigr] 0 ]
y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 2 a + 4 ) x {y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2a+4\right){x} y 2 + x y = x 3 + ( a − 1 ) x 2 + ( 2 a + 4 ) x
34.1-a3
34.1-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
34.1
2 ⋅ 17 2 \cdot 17 2 ⋅ 1 7
2 3 ⋅ 1 7 2 2^{3} \cdot 17^{2} 2 3 ⋅ 1 7 2
0.61031 0.61031 0 . 6 1 0 3 1
( a ) , ( − 3 a − 1 ) (a), (-3a-1) ( a ) , ( − 3 a − 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
25.11050160 25.11050160 2 5 . 1 1 0 5 0 1 6 0
0.493216832
− 6018090689657 1156 a + 4255433785057 578 -\frac{6018090689657}{1156} a + \frac{4255433785057}{578} − 1 1 5 6 6 0 1 8 0 9 0 6 8 9 6 5 7 a + 5 7 8 4 2 5 5 4 3 3 7 8 5 0 5 7
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , 0 0 0 , − 8 a − 16 -8 a - 16 − 8 a − 1 6 , − 10 a − 4 ] -10 a - 4\bigr] − 1 0 a − 4 ]
y 2 + x y = x 3 + ( a − 1 ) x 2 + ( − 8 a − 16 ) x − 10 a − 4 {y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-8a-16\right){x}-10a-4 y 2 + x y = x 3 + ( a − 1 ) x 2 + ( − 8 a − 1 6 ) x − 1 0 a − 4
34.1-a4
34.1-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
34.1
2 ⋅ 17 2 \cdot 17 2 ⋅ 1 7
2 9 ⋅ 1 7 6 2^{9} \cdot 17^{6} 2 9 ⋅ 1 7 6
0.61031 0.61031 0 . 6 1 0 3 1
( a ) , ( − 3 a − 1 ) (a), (-3a-1) ( a ) , ( − 3 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
2.790055734 2.790055734 2 . 7 9 0 0 5 5 7 3 4
0.493216832
130087595511310753 772402208 a + 91987087285468997 386201104 \frac{130087595511310753}{772402208} a + \frac{91987087285468997}{386201104} 7 7 2 4 0 2 2 0 8 1 3 0 0 8 7 5 9 5 5 1 1 3 1 0 7 5 3 a + 3 8 6 2 0 1 1 0 4 9 1 9 8 7 0 8 7 2 8 5 4 6 8 9 9 7
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , a a a , 64 a − 141 64 a - 141 6 4 a − 1 4 1 , − 457 a + 479 ] -457 a + 479\bigr] − 4 5 7 a + 4 7 9 ]
y 2 + ( a + 1 ) x y + a y = x 3 + ( a − 1 ) x 2 + ( 64 a − 141 ) x − 457 a + 479 {y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(64a-141\right){x}-457a+479 y 2 + ( a + 1 ) x y + a y = x 3 + ( a − 1 ) x 2 + ( 6 4 a − 1 4 1 ) x − 4 5 7 a + 4 7 9
34.2-a1
34.2-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
34.2
2 ⋅ 17 2 \cdot 17 2 ⋅ 1 7
2 6 ⋅ 17 2^{6} \cdot 17 2 6 ⋅ 1 7
0.61031 0.61031 0 . 6 1 0 3 1
( a ) , ( 3 a − 1 ) (a), (3a-1) ( a ) , ( 3 a − 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
25.11050160 25.11050160 2 5 . 1 1 0 5 0 1 6 0
0.493216832
− 2939047 68 a − 8089117 136 -\frac{2939047}{68} a - \frac{8089117}{136} − 6 8 2 9 3 9 0 4 7 a − 1 3 6 8 0 8 9 1 1 7
[ 1 \bigl[1 [ 1 , − a − 1 -a - 1 − a − 1 , 0 0 0 , − 2 a + 4 -2 a + 4 − 2 a + 4 , 0 ] 0\bigr] 0 ]
y 2 + x y = x 3 + ( − a − 1 ) x 2 + ( − 2 a + 4 ) x {y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a+4\right){x} y 2 + x y = x 3 + ( − a − 1 ) x 2 + ( − 2 a + 4 ) x
34.2-a2
34.2-a
4 4 4
6 6 6
Q ( 2 ) \Q(\sqrt{2}) Q ( 2 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
34.2
2 ⋅ 17 2 \cdot 17 2 ⋅ 1 7
2 18 ⋅ 1 7 3 2^{18} \cdot 17^{3} 2 1 8 ⋅ 1 7 3
0.61031 0.61031 0 . 6 1 0 3 1
( a ) , ( 3 a − 1 ) (a), (3a-1) ( a ) , ( 3 a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
2.790055734 2.790055734 2 . 7 9 0 0 5 5 7 3 4
0.493216832
9756993259 1257728 a − 25455932221 2515456 \frac{9756993259}{1257728} a - \frac{25455932221}{2515456} 1 2 5 7 7 2 8 9 7 5 6 9 9 3 2 5 9 a − 2 5 1 5 4 5 6 2 5 4 5 5 9 3 2 2 2 1
[ a + 1 \bigl[a + 1 [ a + 1 , a − 1 a - 1 a − 1 , 0 0 0 , 15 a + 20 15 a + 20 1 5 a + 2 0 , 44 a + 62 ] 44 a + 62\bigr] 4 4 a + 6 2 ]
y 2 + ( a + 1 ) x y = x 3 + ( a − 1 ) x 2 + ( 15 a + 20 ) x + 44 a + 62 {y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(15a+20\right){x}+44a+62 y 2 + ( a + 1 ) x y = x 3 + ( a − 1 ) x 2 + ( 1 5 a + 2 0 ) x + 4 4 a + 6 2