Properties

Label 2.2.8.1-686.1-d
Base field \(\Q(\sqrt{2}) \)
Weight $[2, 2]$
Level norm $686$
Level $[686, 98, 7w + 28]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{2}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 2\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[686, 98, 7w + 28]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $11$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}1$
7 $[7, 7, -2w + 1]$ $-1$
7 $[7, 7, -2w - 1]$ $\phantom{-}0$
9 $[9, 3, 3]$ $\phantom{-}2$
17 $[17, 17, 3w + 1]$ $-6$
17 $[17, 17, 3w - 1]$ $\phantom{-}6$
23 $[23, 23, w + 5]$ $\phantom{-}0$
23 $[23, 23, -w + 5]$ $\phantom{-}0$
25 $[25, 5, 5]$ $\phantom{-}10$
31 $[31, 31, 4w + 1]$ $\phantom{-}4$
31 $[31, 31, -4w + 1]$ $-4$
41 $[41, 41, 2w - 7]$ $\phantom{-}6$
41 $[41, 41, -2w - 7]$ $-6$
47 $[47, 47, -w - 7]$ $\phantom{-}12$
47 $[47, 47, w - 7]$ $-12$
71 $[71, 71, -6w - 1]$ $\phantom{-}0$
71 $[71, 71, 6w - 1]$ $\phantom{-}0$
73 $[73, 73, -7w - 5]$ $-2$
73 $[73, 73, 7w - 5]$ $\phantom{-}2$
79 $[79, 79, -w - 9]$ $-8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w]$ $-1$
$7$ $[7, 7, -2w + 1]$ $1$
$7$ $[7, 7, -2w - 1]$ $-1$