Learn more

Refine search


Results (24 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
686.1-a1 686.1-a Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.1362519811.136251981 2.008628703 29680387a133931057224 \frac{2968038}{7} a - \frac{133931057}{224} [1 \bigl[1 , a1 -a - 1 , a+1 a + 1 , 43a6 43 a - 6 , 65a135] 65 a - 135\bigr] y2+xy+(a+1)y=x3+(a1)x2+(43a6)x+65a135{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(43a-6\right){x}+65a-135
686.1-a2 686.1-a Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.1362519811.136251981 2.008628703 199003633361573392a+3517920474236849 -\frac{199003633361573}{392} a + \frac{35179204742368}{49} [1 \bigl[1 , a1 -a - 1 , a+1 a + 1 , 303a646 303 a - 646 , 4929a6831] 4929 a - 6831\bigr] y2+xy+(a+1)y=x3+(a1)x2+(303a646)x+4929a6831{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(303a-646\right){x}+4929a-6831
686.1-b1 686.1-b Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 11 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 0.0504615530.050461553 20.3483431820.34834318 1.452127213 7974621686a12367339686 \frac{7974621}{686} a - \frac{12367339}{686} [a+1 \bigl[a + 1 , a1 a - 1 , a a , 5a9 5 a - 9 , 15a+21] -15 a + 21\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(5a9)x15a+21{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5a-9\right){x}-15a+21
686.1-b2 686.1-b Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0168205170.016820517 2.2609270202.260927020 1.452127213 59405903367322828856a+391232728667322828856 -\frac{59405903367}{322828856} a + \frac{391232728667}{322828856} [a+1 \bigl[a + 1 , a1 a - 1 , a a , 25a+46 -25 a + 46 , 20a+22] -20 a + 22\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(25a+46)x20a+22{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-25a+46\right){x}-20a+22
686.1-c1 686.1-c Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1252161970.125216197 8.2191921818.219192181 1.455474647 341511377481251686a482970021761709686 -\frac{341511377481251}{686} a - \frac{482970021761709}{686} [1 \bigl[1 , a a , a+1 a + 1 , 31a50 -31 a - 50 , 121a+124] 121 a + 124\bigr] y2+xy+(a+1)y=x3+ax2+(31a50)x+121a+124{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-31a-50\right){x}+121a+124
686.1-c2 686.1-c Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0417387320.041738732 24.6575765424.65757654 1.455474647 20818356a29256356 -\frac{208183}{56} a - \frac{292563}{56} [1 \bigl[1 , a a , a+1 a + 1 , a -a , a] -a\bigr] y2+xy+(a+1)y=x3+ax2axa{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}-a{x}-a
686.1-d1 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.6617531520.661753152 2.105685636 5483477316251835008 -\frac{548347731625}{1835008} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 683a1536 -683 a - 1536 , 19222a+21843] 19222 a + 21843\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(683a1536)x+19222a+21843{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-683a-1536\right){x}+19222a+21843
686.1-d2 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 5.9557783715.955778371 2.105685636 1562528 -\frac{15625}{28} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 3a6 -3 a - 6 , 6a7] -6 a - 7\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(3a6)x6a7{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3a-6\right){x}-6a-7
686.1-d3 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.9852594571.985259457 2.105685636 993837521952 \frac{9938375}{21952} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 17a+39 17 a + 39 , 126a+143] 126 a + 143\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(17a+39)x+126a+143{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(17a+39\right){x}+126a+143
686.1-d4 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.9557783715.955778371 2.105685636 29287432231928754802a+20709341984650002401 -\frac{2928743223192875}{4802} a + \frac{2070934198465000}{2401} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 132a376 132 a - 376 , 1908a+2353] -1908 a + 2353\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(132a376)x1908a+2353{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(132a-376\right){x}-1908a+2353
686.1-d5 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.9852594571.985259457 2.105685636 4956477625941192 \frac{4956477625}{941192} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 143a321 -143 a - 321 , 1534a+1743] 1534 a + 1743\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(143a321)x+1534a+1743{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-143a-321\right){x}+1534a+1743
686.1-d6 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4963148640.496314864 2.105685636 39212749209231812555365148804a+13881453277632100013841287201 -\frac{392127492092318125}{55365148804} a + \frac{138814532776321000}{13841287201} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 253a2161 -253 a - 2161 , 5170a37057] -5170 a - 37057\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(253a2161)x5170a37057{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-253a-2161\right){x}-5170a-37057
686.1-d7 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1654382880.165438288 2.105685636 21876883129007884285775912576832a+96683077573419077024650002401 -\frac{218768831290078842857759125}{76832} a + \frac{9668307757341907702465000}{2401} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 37477a93056 37477 a - 93056 , 8696054a9208877] 8696054 a - 9208877\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(37477a93056)x+8696054a9208877{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(37477a-93056\right){x}+8696054a-9208877
686.1-d8 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.9557783715.955778371 2.105685636 12878762598 \frac{128787625}{98} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 43a96 -43 a - 96 , 270a307] -270 a - 307\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(43a96)x270a307{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-43a-96\right){x}-270a-307
686.1-d9 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.9852594571.985259457 2.105685636 39212749209231812555365148804a+13881453277632100013841287201 \frac{392127492092318125}{55365148804} a + \frac{138814532776321000}{13841287201} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 2593a4241 -2593 a - 4241 , 94830a+138943] 94830 a + 138943\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(2593a4241)x+94830a+138943{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2593a-4241\right){x}+94830a+138943
686.1-d10 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6617531520.661753152 2.105685636 225143905569962525088 \frac{2251439055699625}{25088} [a+1 \bigl[a + 1 , a1 -a - 1 , a+1 a + 1 , 10923a24576 -10923 a - 24576 , 1213206a+1378643] 1213206 a + 1378643\bigr] y2+(a+1)xy+(a+1)y=x3+(a1)x2+(10923a24576)x+1213206a+1378643{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10923a-24576\right){x}+1213206a+1378643
686.1-d11 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.4889445921.488944592 2.105685636 29287432231928754802a+20709341984650002401 \frac{2928743223192875}{4802} a + \frac{2070934198465000}{2401} [1 \bigl[1 , a+1 -a + 1 , 1 1 , 485a759 485 a - 759 , 2705a+3591] -2705 a + 3591\bigr] y2+xy+y=x3+(a+1)x2+(485a759)x2705a+3591{y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(485a-759\right){x}-2705a+3591
686.1-d12 686.1-d Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6617531520.661753152 2.105685636 21876883129007884285775912576832a+96683077573419077024650002401 \frac{218768831290078842857759125}{76832} a + \frac{9668307757341907702465000}{2401} [1 \bigl[1 , a+1 -a + 1 , 1 1 , 103060a164599 103060 a - 164599 , 23909933a32816619] 23909933 a - 32816619\bigr] y2+xy+y=x3+(a+1)x2+(103060a164599)x+23909933a32816619{y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(103060a-164599\right){x}+23909933a-32816619
686.1-e1 686.1-e Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.3488888850.348888885 2.220315274 341511377481251686a482970021761709686 -\frac{341511377481251}{686} a - \frac{482970021761709}{686} [a+1 \bigl[a + 1 , a+1 a + 1 , a+1 a + 1 , 476a696 -476 a - 696 , 7429a10807] -7429 a - 10807\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x2+(476a696)x7429a10807{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-476a-696\right){x}-7429a-10807
686.1-e2 686.1-e Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 3.1399999733.139999973 2.220315274 20818356a29256356 -\frac{208183}{56} a - \frac{292563}{56} [a+1 \bigl[a + 1 , a+1 a + 1 , a+1 a + 1 , 6a6 -6 a - 6 , 21a19] -21 a - 19\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x2+(6a6)x21a19{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-6a-6\right){x}-21a-19
686.1-f1 686.1-f Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.0162961943.016296194 1.066421746 29680387a133931057224 \frac{2968038}{7} a - \frac{133931057}{224} [a+1 \bigl[a + 1 , 1 1 , 0 0 , 9a7 9 a - 7 , 16a19] 16 a - 19\bigr] y2+(a+1)xy=x3+x2+(9a7)x+16a19{y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(9a-7\right){x}+16a-19
686.1-f2 686.1-f Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.0162961943.016296194 1.066421746 199003633361573392a+3517920474236849 -\frac{199003633361573}{392} a + \frac{35179204742368}{49} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 176a256 -176 a - 256 , 36a+32] 36 a + 32\bigr] y2+xy=x3+(a+1)x2+(176a256)x+36a+32{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-176a-256\right){x}+36a+32
686.1-g1 686.1-g Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 3.1305116113.130511611 2.213605989 7974621686a12367339686 \frac{7974621}{686} a - \frac{12367339}{686} [1 \bigl[1 , a -a , a a , 13a39 13 a - 39 , 67a+51] -67 a + 51\bigr] y2+xy+ay=x3ax2+(13a39)x67a+51{y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(13a-39\right){x}-67a+51
686.1-g2 686.1-g Q(2)\Q(\sqrt{2}) 273 2 \cdot 7^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.0435038701.043503870 2.213605989 59405903367322828856a+391232728667322828856 -\frac{59405903367}{322828856} a + \frac{391232728667}{322828856} [1 \bigl[1 , a -a , a a , 37a+216 -37 a + 216 , 64a+756] -64 a + 756\bigr] y2+xy+ay=x3ax2+(37a+216)x64a+756{y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-37a+216\right){x}-64a+756
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.