Base field \(\Q(\sqrt{15}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 15 \); class number \(2\).
Weierstrass equation
This is not a global minimal model: it is minimal at all primes except \((2,a+1)\). No global minimal model exists.
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-7 a - 29 : 0 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((10,2a)\) | = | \((2,a+1)^{2}\cdot(5,a)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 20 \) | = | \(2^{2}\cdot5\) |
| |||||
Discriminant: | $\Delta$ | = | $128000$ | ||
Discriminant ideal: | $(\Delta)$ | = | \((128000)\) | = | \((2,a+1)^{20}\cdot(5,a)^{6}\) |
| |||||
Discriminant norm: | $N(\Delta)$ | = | \( 16384000000 \) | = | \(2^{20}\cdot5^{6}\) |
| |||||
Minimal discriminant: | $\frak{D}_{\mathrm{min}}$ | = | \((2000)\) | = | \((2,a+1)^{8}\cdot(5,a)^{6}\) |
Minimal discriminant norm: | $N(\frak{D}_{\mathrm{min}})$ | = | \( 4000000 \) | = | \(2^{8}\cdot5^{6}\) |
j-invariant: | $j$ | = | \( \frac{488095744}{125} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(0\) |
Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 3.5453755300073618787662430888657548036 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 18 \) = \(3\cdot( 2 \cdot 3 )\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.0596770575654709844622767049837422206 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}2.059677058 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 3.545376 \cdot 1 \cdot 18 } { {2^2 \cdot 7.745967} } \\ & \approx 2.059677058 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((2,a+1)\) | \(2\) | \(3\) | \(IV^{*}\) | Additive | \(-1\) | \(2\) | \(8\) | \(0\) |
\((5,a)\) | \(5\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class
20.1-a
consists of curves linked by isogenies of
degrees dividing 6.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 100.a1 |
\(\Q\) | 720.h1 |