# Properties

 Label 2.2.60.1-20.1-a Base field $$\Q(\sqrt{15})$$ Weight $[2, 2]$ Level norm $20$ Level $[20, 10, 2w]$ Dimension $1$ CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{15})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 15$$; narrow class number $$4$$ and class number $$2$$.

## Form

 Weight: $[2, 2]$ Level: $[20, 10, 2w]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $4$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, w]$ $\phantom{-}2$
5 $[5, 5, w]$ $\phantom{-}1$
7 $[7, 7, w + 1]$ $-2$
7 $[7, 7, w + 6]$ $-2$
11 $[11, 11, -w - 2]$ $\phantom{-}0$
11 $[11, 11, w - 2]$ $\phantom{-}0$
17 $[17, 17, w + 7]$ $\phantom{-}6$
17 $[17, 17, w + 10]$ $\phantom{-}6$
43 $[43, 43, w + 12]$ $\phantom{-}10$
43 $[43, 43, w + 31]$ $\phantom{-}10$
53 $[53, 53, w + 11]$ $\phantom{-}6$
53 $[53, 53, w + 42]$ $\phantom{-}6$
59 $[59, 59, 2w - 1]$ $\phantom{-}12$
59 $[59, 59, -2w - 1]$ $\phantom{-}12$
61 $[61, 61, 2w - 11]$ $\phantom{-}2$
61 $[61, 61, -2w - 11]$ $\phantom{-}2$
67 $[67, 67, w + 22]$ $-2$
67 $[67, 67, w + 45]$ $-2$
71 $[71, 71, 3w - 8]$ $-12$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w + 1]$ $-1$
$5$ $[5, 5, w]$ $-1$