Learn more

Refine search


Results (1-50 of 1316 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
8.1-a1 8.1-a \(\Q(\sqrt{15}) \) \( 2^{3} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.176177662$ $21.87465325$ 1.536384471 \( -432 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -8 a - 26\) , \( -64 a - 250\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-8a-26\right){x}-64a-250$
8.1-a2 8.1-a \(\Q(\sqrt{15}) \) \( 2^{3} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.176177662$ $21.87465325$ 1.536384471 \( -128955875202 a + 499443959016 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -208 a - 806\) , \( -1388 a - 5366\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-208a-806\right){x}-1388a-5366$
8.1-a3 8.1-a \(\Q(\sqrt{15}) \) \( 2^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.088088831$ $21.87465325$ 1.536384471 \( 1000188 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -168 a - 646\) , \( -2548 a - 9870\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-168a-646\right){x}-2548a-9870$
8.1-a4 8.1-a \(\Q(\sqrt{15}) \) \( 2^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.176177662$ $5.468663313$ 1.536384471 \( 128955875202 a + 499443959016 \) \( \bigl[0\) , \( a\) , \( 0\) , \( -2688 a - 10406\) , \( -152764 a - 591654\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-2688a-10406\right){x}-152764a-591654$
8.1-b1 8.1-b \(\Q(\sqrt{15}) \) \( 2^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $21.87465325$ 1.412002795 \( -432 \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -125 a - 476\) , \( 3263 a + 12642\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-125a-476\right){x}+3263a+12642$
8.1-b2 8.1-b \(\Q(\sqrt{15}) \) \( 2^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.468663313$ 1.412002795 \( -128955875202 a + 499443959016 \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -3235 a - 12521\) , \( 67026 a + 259595\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3235a-12521\right){x}+67026a+259595$
8.1-b3 8.1-b \(\Q(\sqrt{15}) \) \( 2^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $21.87465325$ 1.412002795 \( 1000188 \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -2605 a - 10081\) , \( 141300 a + 547257\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2605a-10081\right){x}+141300a+547257$
8.1-b4 8.1-b \(\Q(\sqrt{15}) \) \( 2^{3} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $21.87465325$ 1.412002795 \( 128955875202 a + 499443959016 \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -41655 a - 161321\) , \( 9092142 a + 35213719\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-41655a-161321\right){x}+9092142a+35213719$
8.1-c1 8.1-c \(\Q(\sqrt{15}) \) \( 2^{3} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.176177662$ $21.87465325$ 1.536384471 \( -432 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -8 a - 26\) , \( 64 a + 250\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-8a-26\right){x}+64a+250$
8.1-c2 8.1-c \(\Q(\sqrt{15}) \) \( 2^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.176177662$ $5.468663313$ 1.536384471 \( -128955875202 a + 499443959016 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -208 a - 806\) , \( 1388 a + 5366\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-208a-806\right){x}+1388a+5366$
8.1-c3 8.1-c \(\Q(\sqrt{15}) \) \( 2^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.088088831$ $21.87465325$ 1.536384471 \( 1000188 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -168 a - 646\) , \( 2548 a + 9870\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-168a-646\right){x}+2548a+9870$
8.1-c4 8.1-c \(\Q(\sqrt{15}) \) \( 2^{3} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.176177662$ $21.87465325$ 1.536384471 \( 128955875202 a + 499443959016 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -2688 a - 10406\) , \( 152764 a + 591654\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-2688a-10406\right){x}+152764a+591654$
8.1-d1 8.1-d \(\Q(\sqrt{15}) \) \( 2^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $21.87465325$ 1.412002795 \( -432 \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -4\) , \( -2\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}-4{x}-2$
8.1-d2 8.1-d \(\Q(\sqrt{15}) \) \( 2^{3} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $21.87465325$ 1.412002795 \( -128955875202 a + 499443959016 \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 10 a - 49\) , \( -36 a + 125\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(10a-49\right){x}-36a+125$
8.1-d3 8.1-d \(\Q(\sqrt{15}) \) \( 2^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $21.87465325$ 1.412002795 \( 1000188 \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -9\) , \( -2 a - 7\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}-9{x}-2a-7$
8.1-d4 8.1-d \(\Q(\sqrt{15}) \) \( 2^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.468663313$ 1.412002795 \( 128955875202 a + 499443959016 \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -10 a - 49\) , \( -56 a - 219\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-10a-49\right){x}-56a-219$
10.1-a1 10.1-a \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $22.35500709$ 0.320668778 \( -\frac{368271}{10} a - \frac{713678}{5} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -3 a + 4\) , \( -2 a + 4\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+4\right){x}-2a+4$
10.1-a2 10.1-a \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.483889677$ 0.320668778 \( \frac{22896613727}{1000} a - \frac{22169433439}{250} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 27 a - 111\) , \( 260 a - 1010\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(27a-111\right){x}+260a-1010$
10.1-a3 10.1-a \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.483889677$ 0.320668778 \( -\frac{406087370211328559}{100} a + \frac{314553924386830927}{20} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 477 a - 1861\) , \( 12680 a - 49110\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(477a-1861\right){x}+12680a-49110$
10.1-a4 10.1-a \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $22.35500709$ 0.320668778 \( \frac{105678766089}{10} a + \frac{81859053049}{2} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 2 a - 21\) , \( 30 a - 116\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a-21\right){x}+30a-116$
10.1-b1 10.1-b \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( -\frac{22896613727}{1000} a - \frac{22169433439}{250} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -402 a + 1564\) , \( 14377 a - 55675\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-402a+1564\right){x}+14377a-55675$
10.1-b2 10.1-b \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( \frac{368271}{10} a - \frac{713678}{5} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 188 a - 721\) , \( 2661 a - 10299\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(188a-721\right){x}+2661a-10299$
10.1-b3 10.1-b \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( -\frac{105678766089}{10} a + \frac{81859053049}{2} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 2983 a - 11546\) , \( 173253 a - 670999\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2983a-11546\right){x}+173253a-670999$
10.1-b4 10.1-b \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( \frac{406087370211328559}{100} a + \frac{314553924386830927}{20} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 3148 a - 12186\) , \( 152797 a - 591775\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3148a-12186\right){x}+152797a-591775$
10.1-c1 10.1-c \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( -\frac{22896613727}{1000} a - \frac{22169433439}{250} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -24 a + 110\) , \( 250 a - 960\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-24a+110\right){x}+250a-960$
10.1-c2 10.1-c \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( \frac{368271}{10} a - \frac{713678}{5} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 16 a - 30\) , \( 42 a - 128\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(16a-30\right){x}+42a-128$
10.1-c3 10.1-c \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( -\frac{105678766089}{10} a + \frac{81859053049}{2} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 196 a - 730\) , \( 2746 a - 10608\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(196a-730\right){x}+2746a-10608$
10.1-c4 10.1-c \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( \frac{406087370211328559}{100} a + \frac{314553924386830927}{20} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 176 a - 890\) , \( 2490 a - 8960\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(176a-890\right){x}+2490a-8960$
10.1-d1 10.1-d \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.35500709$ 2.886019006 \( -\frac{368271}{10} a - \frac{713678}{5} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 54 a - 205\) , \( 1800 a - 6965\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(54a-205\right){x}+1800a-6965$
10.1-d2 10.1-d \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.483889677$ 2.886019006 \( \frac{22896613727}{1000} a - \frac{22169433439}{250} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 7454 a - 28865\) , \( 696920 a - 2699153\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(7454a-28865\right){x}+696920a-2699153$
10.1-d3 10.1-d \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.483889677$ 2.886019006 \( -\frac{406087370211328559}{100} a + \frac{314553924386830927}{20} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 119254 a - 461865\) , \( 44237360 a - 171330553\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(119254a-461865\right){x}+44237360a-171330553$
10.1-d4 10.1-d \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.35500709$ 2.886019006 \( \frac{105678766089}{10} a + \frac{81859053049}{2} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 1474 a - 5705\) , \( 61924 a - 239825\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(1474a-5705\right){x}+61924a-239825$
10.1-e1 10.1-e \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( -\frac{368271}{10} a - \frac{713678}{5} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 52 a - 200\) , \( -1640 a + 6352\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(52a-200\right){x}-1640a+6352$
10.1-e2 10.1-e \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( \frac{22896613727}{1000} a - \frac{22169433439}{250} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 7452 a - 28860\) , \( -674560 a + 2612560\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(7452a-28860\right){x}-674560a+2612560$
10.1-e3 10.1-e \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( -\frac{406087370211328559}{100} a + \frac{314553924386830927}{20} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 119252 a - 461860\) , \( -43879600 a + 169944960\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(119252a-461860\right){x}-43879600a+169944960$
10.1-e4 10.1-e \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( \frac{105678766089}{10} a + \frac{81859053049}{2} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 1472 a - 5700\) , \( -57504 a + 222712\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(1472a-5700\right){x}-57504a+222712$
10.1-f1 10.1-f \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.483889677$ 2.886019006 \( -\frac{22896613727}{1000} a - \frac{22169433439}{250} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( -23 a + 113\) , \( -230 a + 861\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-23a+113\right){x}-230a+861$
10.1-f2 10.1-f \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.35500709$ 2.886019006 \( \frac{368271}{10} a - \frac{713678}{5} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 17 a - 27\) , \( -42 a + 209\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(17a-27\right){x}-42a+209$
10.1-f3 10.1-f \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.35500709$ 2.886019006 \( -\frac{105678766089}{10} a + \frac{81859053049}{2} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 197 a - 727\) , \( -2906 a + 11289\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(197a-727\right){x}-2906a+11289$
10.1-f4 10.1-f \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.483889677$ 2.886019006 \( \frac{406087370211328559}{100} a + \frac{314553924386830927}{20} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 177 a - 887\) , \( -2870 a + 8861\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(177a-887\right){x}-2870a+8861$
10.1-g1 10.1-g \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.483889677$ 0.320668778 \( -\frac{22896613727}{1000} a - \frac{22169433439}{250} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( -404 a + 1569\) , \( -14780 a + 57241\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(-404a+1569\right){x}-14780a+57241$
10.1-g2 10.1-g \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $22.35500709$ 0.320668778 \( \frac{368271}{10} a - \frac{713678}{5} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( 186 a - 716\) , \( -2474 a + 9580\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(186a-716\right){x}-2474a+9580$
10.1-g3 10.1-g \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $22.35500709$ 0.320668778 \( -\frac{105678766089}{10} a + \frac{81859053049}{2} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( 2981 a - 11541\) , \( -170271 a + 659455\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(2981a-11541\right){x}-170271a+659455$
10.1-g4 10.1-g \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.483889677$ 0.320668778 \( \frac{406087370211328559}{100} a + \frac{314553924386830927}{20} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( 3146 a - 12181\) , \( -149650 a + 579591\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(3146a-12181\right){x}-149650a+579591$
10.1-h1 10.1-h \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( -\frac{368271}{10} a - \frac{713678}{5} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( a + 4\) , \( 4\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+4\right){x}+4$
10.1-h2 10.1-h \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( \frac{22896613727}{1000} a - \frac{22169433439}{250} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 31 a - 111\) , \( -202 a + 788\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(31a-111\right){x}-202a+788$
10.1-h3 10.1-h \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( -\frac{406087370211328559}{100} a + \frac{314553924386830927}{20} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 481 a - 1861\) , \( -11722 a + 45388\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(481a-1861\right){x}-11722a+45388$
10.1-h4 10.1-h \(\Q(\sqrt{15}) \) \( 2 \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.26497123$ 1.454301533 \( \frac{105678766089}{10} a + \frac{81859053049}{2} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 6 a - 21\) , \( -22 a + 74\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(6a-21\right){x}-22a+74$
14.1-a1 14.1-a \(\Q(\sqrt{15}) \) \( 2 \cdot 7 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.760182873$ 2.649758048 \( -\frac{632235090508565}{28} a - \frac{2448631469962925}{28} \) \( \bigl[a\) , \( 1\) , \( 1\) , \( 5060 a - 19593\) , \( 393664 a - 1524653\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+{x}^{2}+\left(5060a-19593\right){x}+393664a-1524653$
14.1-a2 14.1-a \(\Q(\sqrt{15}) \) \( 2 \cdot 7 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $6.841645863$ 2.649758048 \( -\frac{80643645}{10976} a - \frac{293363275}{10976} \) \( \bigl[a\) , \( 1\) , \( 1\) , \( 90 a - 343\) , \( 152 a - 585\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+{x}^{2}+\left(90a-343\right){x}+152a-585$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.