Learn more

Refine search


Results (1-50 of 1316 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
8.1-a1 8.1-a Q(15)\Q(\sqrt{15}) 23 2^{3} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 2.1761776622.176177662 21.8746532521.87465325 1.536384471 432 -432 [0 \bigl[0 , a a , 0 0 , 8a26 -8 a - 26 , 64a250] -64 a - 250\bigr] y2=x3+ax2+(8a26)x64a250{y}^2={x}^{3}+a{x}^{2}+\left(-8a-26\right){x}-64a-250
8.1-a2 8.1-a Q(15)\Q(\sqrt{15}) 23 2^{3} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 2.1761776622.176177662 21.8746532521.87465325 1.536384471 128955875202a+499443959016 -128955875202 a + 499443959016 [0 \bigl[0 , a a , 0 0 , 208a806 -208 a - 806 , 1388a5366] -1388 a - 5366\bigr] y2=x3+ax2+(208a806)x1388a5366{y}^2={x}^{3}+a{x}^{2}+\left(-208a-806\right){x}-1388a-5366
8.1-a3 8.1-a Q(15)\Q(\sqrt{15}) 23 2^{3} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.0880888311.088088831 21.8746532521.87465325 1.536384471 1000188 1000188 [0 \bigl[0 , a a , 0 0 , 168a646 -168 a - 646 , 2548a9870] -2548 a - 9870\bigr] y2=x3+ax2+(168a646)x2548a9870{y}^2={x}^{3}+a{x}^{2}+\left(-168a-646\right){x}-2548a-9870
8.1-a4 8.1-a Q(15)\Q(\sqrt{15}) 23 2^{3} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.1761776622.176177662 5.4686633135.468663313 1.536384471 128955875202a+499443959016 128955875202 a + 499443959016 [0 \bigl[0 , a a , 0 0 , 2688a10406 -2688 a - 10406 , 152764a591654] -152764 a - 591654\bigr] y2=x3+ax2+(2688a10406)x152764a591654{y}^2={x}^{3}+a{x}^{2}+\left(-2688a-10406\right){x}-152764a-591654
8.1-b1 8.1-b Q(15)\Q(\sqrt{15}) 23 2^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 21.8746532521.87465325 1.412002795 432 -432 [a+1 \bigl[a + 1 , a1 -a - 1 , 0 0 , 125a476 -125 a - 476 , 3263a+12642] 3263 a + 12642\bigr] y2+(a+1)xy=x3+(a1)x2+(125a476)x+3263a+12642{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-125a-476\right){x}+3263a+12642
8.1-b2 8.1-b Q(15)\Q(\sqrt{15}) 23 2^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.4686633135.468663313 1.412002795 128955875202a+499443959016 -128955875202 a + 499443959016 [a+1 \bigl[a + 1 , a1 -a - 1 , 0 0 , 3235a12521 -3235 a - 12521 , 67026a+259595] 67026 a + 259595\bigr] y2+(a+1)xy=x3+(a1)x2+(3235a12521)x+67026a+259595{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3235a-12521\right){x}+67026a+259595
8.1-b3 8.1-b Q(15)\Q(\sqrt{15}) 23 2^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 21.8746532521.87465325 1.412002795 1000188 1000188 [a+1 \bigl[a + 1 , a1 -a - 1 , 0 0 , 2605a10081 -2605 a - 10081 , 141300a+547257] 141300 a + 547257\bigr] y2+(a+1)xy=x3+(a1)x2+(2605a10081)x+141300a+547257{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2605a-10081\right){x}+141300a+547257
8.1-b4 8.1-b Q(15)\Q(\sqrt{15}) 23 2^{3} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 21.8746532521.87465325 1.412002795 128955875202a+499443959016 128955875202 a + 499443959016 [a+1 \bigl[a + 1 , a1 -a - 1 , 0 0 , 41655a161321 -41655 a - 161321 , 9092142a+35213719] 9092142 a + 35213719\bigr] y2+(a+1)xy=x3+(a1)x2+(41655a161321)x+9092142a+35213719{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-41655a-161321\right){x}+9092142a+35213719
8.1-c1 8.1-c Q(15)\Q(\sqrt{15}) 23 2^{3} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 2.1761776622.176177662 21.8746532521.87465325 1.536384471 432 -432 [0 \bigl[0 , a -a , 0 0 , 8a26 -8 a - 26 , 64a+250] 64 a + 250\bigr] y2=x3ax2+(8a26)x+64a+250{y}^2={x}^{3}-a{x}^{2}+\left(-8a-26\right){x}+64a+250
8.1-c2 8.1-c Q(15)\Q(\sqrt{15}) 23 2^{3} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.1761776622.176177662 5.4686633135.468663313 1.536384471 128955875202a+499443959016 -128955875202 a + 499443959016 [0 \bigl[0 , a -a , 0 0 , 208a806 -208 a - 806 , 1388a+5366] 1388 a + 5366\bigr] y2=x3ax2+(208a806)x+1388a+5366{y}^2={x}^{3}-a{x}^{2}+\left(-208a-806\right){x}+1388a+5366
8.1-c3 8.1-c Q(15)\Q(\sqrt{15}) 23 2^{3} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.0880888311.088088831 21.8746532521.87465325 1.536384471 1000188 1000188 [0 \bigl[0 , a -a , 0 0 , 168a646 -168 a - 646 , 2548a+9870] 2548 a + 9870\bigr] y2=x3ax2+(168a646)x+2548a+9870{y}^2={x}^{3}-a{x}^{2}+\left(-168a-646\right){x}+2548a+9870
8.1-c4 8.1-c Q(15)\Q(\sqrt{15}) 23 2^{3} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 2.1761776622.176177662 21.8746532521.87465325 1.536384471 128955875202a+499443959016 128955875202 a + 499443959016 [0 \bigl[0 , a -a , 0 0 , 2688a10406 -2688 a - 10406 , 152764a+591654] 152764 a + 591654\bigr] y2=x3ax2+(2688a10406)x+152764a+591654{y}^2={x}^{3}-a{x}^{2}+\left(-2688a-10406\right){x}+152764a+591654
8.1-d1 8.1-d Q(15)\Q(\sqrt{15}) 23 2^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 21.8746532521.87465325 1.412002795 432 -432 [a+1 \bigl[a + 1 , 1 -1 , a+1 a + 1 , 4 -4 , 2] -2\bigr] y2+(a+1)xy+(a+1)y=x3x24x2{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}-4{x}-2
8.1-d2 8.1-d Q(15)\Q(\sqrt{15}) 23 2^{3} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 21.8746532521.87465325 1.412002795 128955875202a+499443959016 -128955875202 a + 499443959016 [a+1 \bigl[a + 1 , 1 -1 , a+1 a + 1 , 10a49 10 a - 49 , 36a+125] -36 a + 125\bigr] y2+(a+1)xy+(a+1)y=x3x2+(10a49)x36a+125{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(10a-49\right){x}-36a+125
8.1-d3 8.1-d Q(15)\Q(\sqrt{15}) 23 2^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 21.8746532521.87465325 1.412002795 1000188 1000188 [a+1 \bigl[a + 1 , 1 -1 , a+1 a + 1 , 9 -9 , 2a7] -2 a - 7\bigr] y2+(a+1)xy+(a+1)y=x3x29x2a7{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}-9{x}-2a-7
8.1-d4 8.1-d Q(15)\Q(\sqrt{15}) 23 2^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.4686633135.468663313 1.412002795 128955875202a+499443959016 128955875202 a + 499443959016 [a+1 \bigl[a + 1 , 1 -1 , a+1 a + 1 , 10a49 -10 a - 49 , 56a219] -56 a - 219\bigr] y2+(a+1)xy+(a+1)y=x3x2+(10a49)x56a219{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-10a-49\right){x}-56a-219
10.1-a1 10.1-a Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 22.3550070922.35500709 0.320668778 36827110a7136785 -\frac{368271}{10} a - \frac{713678}{5} [a \bigl[a , a+1 -a + 1 , a a , 3a+4 -3 a + 4 , 2a+4] -2 a + 4\bigr] y2+axy+ay=x3+(a+1)x2+(3a+4)x2a+4{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+4\right){x}-2a+4
10.1-a2 10.1-a Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.4838896772.483889677 0.320668778 228966137271000a22169433439250 \frac{22896613727}{1000} a - \frac{22169433439}{250} [a \bigl[a , a+1 -a + 1 , a a , 27a111 27 a - 111 , 260a1010] 260 a - 1010\bigr] y2+axy+ay=x3+(a+1)x2+(27a111)x+260a1010{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(27a-111\right){x}+260a-1010
10.1-a3 10.1-a Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.4838896772.483889677 0.320668778 406087370211328559100a+31455392438683092720 -\frac{406087370211328559}{100} a + \frac{314553924386830927}{20} [a \bigl[a , a+1 -a + 1 , a a , 477a1861 477 a - 1861 , 12680a49110] 12680 a - 49110\bigr] y2+axy+ay=x3+(a+1)x2+(477a1861)x+12680a49110{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(477a-1861\right){x}+12680a-49110
10.1-a4 10.1-a Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 22.3550070922.35500709 0.320668778 10567876608910a+818590530492 \frac{105678766089}{10} a + \frac{81859053049}{2} [a \bigl[a , a+1 -a + 1 , a a , 2a21 2 a - 21 , 30a116] 30 a - 116\bigr] y2+axy+ay=x3+(a+1)x2+(2a21)x+30a116{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a-21\right){x}+30a-116
10.1-b1 10.1-b Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 228966137271000a22169433439250 -\frac{22896613727}{1000} a - \frac{22169433439}{250} [a \bigl[a , a1 a - 1 , a a , 402a+1564 -402 a + 1564 , 14377a55675] 14377 a - 55675\bigr] y2+axy+ay=x3+(a1)x2+(402a+1564)x+14377a55675{y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-402a+1564\right){x}+14377a-55675
10.1-b2 10.1-b Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 36827110a7136785 \frac{368271}{10} a - \frac{713678}{5} [a \bigl[a , a1 a - 1 , a a , 188a721 188 a - 721 , 2661a10299] 2661 a - 10299\bigr] y2+axy+ay=x3+(a1)x2+(188a721)x+2661a10299{y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(188a-721\right){x}+2661a-10299
10.1-b3 10.1-b Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 10567876608910a+818590530492 -\frac{105678766089}{10} a + \frac{81859053049}{2} [a \bigl[a , a1 a - 1 , a a , 2983a11546 2983 a - 11546 , 173253a670999] 173253 a - 670999\bigr] y2+axy+ay=x3+(a1)x2+(2983a11546)x+173253a670999{y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2983a-11546\right){x}+173253a-670999
10.1-b4 10.1-b Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 406087370211328559100a+31455392438683092720 \frac{406087370211328559}{100} a + \frac{314553924386830927}{20} [a \bigl[a , a1 a - 1 , a a , 3148a12186 3148 a - 12186 , 152797a591775] 152797 a - 591775\bigr] y2+axy+ay=x3+(a1)x2+(3148a12186)x+152797a591775{y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3148a-12186\right){x}+152797a-591775
10.1-c1 10.1-c Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 228966137271000a22169433439250 -\frac{22896613727}{1000} a - \frac{22169433439}{250} [a+1 \bigl[a + 1 , a a , 0 0 , 24a+110 -24 a + 110 , 250a960] 250 a - 960\bigr] y2+(a+1)xy=x3+ax2+(24a+110)x+250a960{y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-24a+110\right){x}+250a-960
10.1-c2 10.1-c Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 36827110a7136785 \frac{368271}{10} a - \frac{713678}{5} [a+1 \bigl[a + 1 , a a , 0 0 , 16a30 16 a - 30 , 42a128] 42 a - 128\bigr] y2+(a+1)xy=x3+ax2+(16a30)x+42a128{y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(16a-30\right){x}+42a-128
10.1-c3 10.1-c Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 10567876608910a+818590530492 -\frac{105678766089}{10} a + \frac{81859053049}{2} [a+1 \bigl[a + 1 , a a , 0 0 , 196a730 196 a - 730 , 2746a10608] 2746 a - 10608\bigr] y2+(a+1)xy=x3+ax2+(196a730)x+2746a10608{y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(196a-730\right){x}+2746a-10608
10.1-c4 10.1-c Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 406087370211328559100a+31455392438683092720 \frac{406087370211328559}{100} a + \frac{314553924386830927}{20} [a+1 \bigl[a + 1 , a a , 0 0 , 176a890 176 a - 890 , 2490a8960] 2490 a - 8960\bigr] y2+(a+1)xy=x3+ax2+(176a890)x+2490a8960{y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(176a-890\right){x}+2490a-8960
10.1-d1 10.1-d Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 22.3550070922.35500709 2.886019006 36827110a7136785 -\frac{368271}{10} a - \frac{713678}{5} [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 54a205 54 a - 205 , 1800a6965] 1800 a - 6965\bigr] y2+(a+1)xy+(a+1)y=x3+x2+(54a205)x+1800a6965{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(54a-205\right){x}+1800a-6965
10.1-d2 10.1-d Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.4838896772.483889677 2.886019006 228966137271000a22169433439250 \frac{22896613727}{1000} a - \frac{22169433439}{250} [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 7454a28865 7454 a - 28865 , 696920a2699153] 696920 a - 2699153\bigr] y2+(a+1)xy+(a+1)y=x3+x2+(7454a28865)x+696920a2699153{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(7454a-28865\right){x}+696920a-2699153
10.1-d3 10.1-d Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.4838896772.483889677 2.886019006 406087370211328559100a+31455392438683092720 -\frac{406087370211328559}{100} a + \frac{314553924386830927}{20} [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 119254a461865 119254 a - 461865 , 44237360a171330553] 44237360 a - 171330553\bigr] y2+(a+1)xy+(a+1)y=x3+x2+(119254a461865)x+44237360a171330553{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(119254a-461865\right){x}+44237360a-171330553
10.1-d4 10.1-d Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 22.3550070922.35500709 2.886019006 10567876608910a+818590530492 \frac{105678766089}{10} a + \frac{81859053049}{2} [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 1474a5705 1474 a - 5705 , 61924a239825] 61924 a - 239825\bigr] y2+(a+1)xy+(a+1)y=x3+x2+(1474a5705)x+61924a239825{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(1474a-5705\right){x}+61924a-239825
10.1-e1 10.1-e Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 36827110a7136785 -\frac{368271}{10} a - \frac{713678}{5} [a+1 \bigl[a + 1 , a -a , 0 0 , 52a200 52 a - 200 , 1640a+6352] -1640 a + 6352\bigr] y2+(a+1)xy=x3ax2+(52a200)x1640a+6352{y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(52a-200\right){x}-1640a+6352
10.1-e2 10.1-e Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 228966137271000a22169433439250 \frac{22896613727}{1000} a - \frac{22169433439}{250} [a+1 \bigl[a + 1 , a -a , 0 0 , 7452a28860 7452 a - 28860 , 674560a+2612560] -674560 a + 2612560\bigr] y2+(a+1)xy=x3ax2+(7452a28860)x674560a+2612560{y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(7452a-28860\right){x}-674560a+2612560
10.1-e3 10.1-e Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 406087370211328559100a+31455392438683092720 -\frac{406087370211328559}{100} a + \frac{314553924386830927}{20} [a+1 \bigl[a + 1 , a -a , 0 0 , 119252a461860 119252 a - 461860 , 43879600a+169944960] -43879600 a + 169944960\bigr] y2+(a+1)xy=x3ax2+(119252a461860)x43879600a+169944960{y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(119252a-461860\right){x}-43879600a+169944960
10.1-e4 10.1-e Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 10567876608910a+818590530492 \frac{105678766089}{10} a + \frac{81859053049}{2} [a+1 \bigl[a + 1 , a -a , 0 0 , 1472a5700 1472 a - 5700 , 57504a+222712] -57504 a + 222712\bigr] y2+(a+1)xy=x3ax2+(1472a5700)x57504a+222712{y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(1472a-5700\right){x}-57504a+222712
10.1-f1 10.1-f Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.4838896772.483889677 2.886019006 228966137271000a22169433439250 -\frac{22896613727}{1000} a - \frac{22169433439}{250} [a+1 \bigl[a + 1 , a+1 a + 1 , 0 0 , 23a+113 -23 a + 113 , 230a+861] -230 a + 861\bigr] y2+(a+1)xy=x3+(a+1)x2+(23a+113)x230a+861{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-23a+113\right){x}-230a+861
10.1-f2 10.1-f Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 22.3550070922.35500709 2.886019006 36827110a7136785 \frac{368271}{10} a - \frac{713678}{5} [a+1 \bigl[a + 1 , a+1 a + 1 , 0 0 , 17a27 17 a - 27 , 42a+209] -42 a + 209\bigr] y2+(a+1)xy=x3+(a+1)x2+(17a27)x42a+209{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(17a-27\right){x}-42a+209
10.1-f3 10.1-f Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 22.3550070922.35500709 2.886019006 10567876608910a+818590530492 -\frac{105678766089}{10} a + \frac{81859053049}{2} [a+1 \bigl[a + 1 , a+1 a + 1 , 0 0 , 197a727 197 a - 727 , 2906a+11289] -2906 a + 11289\bigr] y2+(a+1)xy=x3+(a+1)x2+(197a727)x2906a+11289{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(197a-727\right){x}-2906a+11289
10.1-f4 10.1-f Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.4838896772.483889677 2.886019006 406087370211328559100a+31455392438683092720 \frac{406087370211328559}{100} a + \frac{314553924386830927}{20} [a+1 \bigl[a + 1 , a+1 a + 1 , 0 0 , 177a887 177 a - 887 , 2870a+8861] -2870 a + 8861\bigr] y2+(a+1)xy=x3+(a+1)x2+(177a887)x2870a+8861{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(177a-887\right){x}-2870a+8861
10.1-g1 10.1-g Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.4838896772.483889677 0.320668778 228966137271000a22169433439250 -\frac{22896613727}{1000} a - \frac{22169433439}{250} [1 \bigl[1 , a -a , 0 0 , 404a+1569 -404 a + 1569 , 14780a+57241] -14780 a + 57241\bigr] y2+xy=x3ax2+(404a+1569)x14780a+57241{y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(-404a+1569\right){x}-14780a+57241
10.1-g2 10.1-g Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 22.3550070922.35500709 0.320668778 36827110a7136785 \frac{368271}{10} a - \frac{713678}{5} [1 \bigl[1 , a -a , 0 0 , 186a716 186 a - 716 , 2474a+9580] -2474 a + 9580\bigr] y2+xy=x3ax2+(186a716)x2474a+9580{y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(186a-716\right){x}-2474a+9580
10.1-g3 10.1-g Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 22.3550070922.35500709 0.320668778 10567876608910a+818590530492 -\frac{105678766089}{10} a + \frac{81859053049}{2} [1 \bigl[1 , a -a , 0 0 , 2981a11541 2981 a - 11541 , 170271a+659455] -170271 a + 659455\bigr] y2+xy=x3ax2+(2981a11541)x170271a+659455{y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(2981a-11541\right){x}-170271a+659455
10.1-g4 10.1-g Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.4838896772.483889677 0.320668778 406087370211328559100a+31455392438683092720 \frac{406087370211328559}{100} a + \frac{314553924386830927}{20} [1 \bigl[1 , a -a , 0 0 , 3146a12181 3146 a - 12181 , 149650a+579591] -149650 a + 579591\bigr] y2+xy=x3ax2+(3146a12181)x149650a+579591{y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(3146a-12181\right){x}-149650a+579591
10.1-h1 10.1-h Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 36827110a7136785 -\frac{368271}{10} a - \frac{713678}{5} [1 \bigl[1 , a+1 a + 1 , 1 1 , a+4 a + 4 , 4] 4\bigr] y2+xy+y=x3+(a+1)x2+(a+4)x+4{y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+4\right){x}+4
10.1-h2 10.1-h Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 228966137271000a22169433439250 \frac{22896613727}{1000} a - \frac{22169433439}{250} [1 \bigl[1 , a+1 a + 1 , 1 1 , 31a111 31 a - 111 , 202a+788] -202 a + 788\bigr] y2+xy+y=x3+(a+1)x2+(31a111)x202a+788{y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(31a-111\right){x}-202a+788
10.1-h3 10.1-h Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 406087370211328559100a+31455392438683092720 -\frac{406087370211328559}{100} a + \frac{314553924386830927}{20} [1 \bigl[1 , a+1 a + 1 , 1 1 , 481a1861 481 a - 1861 , 11722a+45388] -11722 a + 45388\bigr] y2+xy+y=x3+(a+1)x2+(481a1861)x11722a+45388{y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(481a-1861\right){x}-11722a+45388
10.1-h4 10.1-h Q(15)\Q(\sqrt{15}) 25 2 \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.2649712311.26497123 1.454301533 10567876608910a+818590530492 \frac{105678766089}{10} a + \frac{81859053049}{2} [1 \bigl[1 , a+1 a + 1 , 1 1 , 6a21 6 a - 21 , 22a+74] -22 a + 74\bigr] y2+xy+y=x3+(a+1)x2+(6a21)x22a+74{y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(6a-21\right){x}-22a+74
14.1-a1 14.1-a Q(15)\Q(\sqrt{15}) 27 2 \cdot 7 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.7601828730.760182873 2.649758048 63223509050856528a244863146996292528 -\frac{632235090508565}{28} a - \frac{2448631469962925}{28} [a \bigl[a , 1 1 , 1 1 , 5060a19593 5060 a - 19593 , 393664a1524653] 393664 a - 1524653\bigr] y2+axy+y=x3+x2+(5060a19593)x+393664a1524653{y}^2+a{x}{y}+{y}={x}^{3}+{x}^{2}+\left(5060a-19593\right){x}+393664a-1524653
14.1-a2 14.1-a Q(15)\Q(\sqrt{15}) 27 2 \cdot 7 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 6.8416458636.841645863 2.649758048 8064364510976a29336327510976 -\frac{80643645}{10976} a - \frac{293363275}{10976} [a \bigl[a , 1 1 , 1 1 , 90a343 90 a - 343 , 152a585] 152 a - 585\bigr] y2+axy+y=x3+x2+(90a343)x+152a585{y}^2+a{x}{y}+{y}={x}^{3}+{x}^{2}+\left(90a-343\right){x}+152a-585
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.