Properties

Base field \(\Q(\sqrt{15}) \)
Label 2.2.60.1-14.1-a
Conductor 14.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{15}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 15 \); class number \(2\).

Elliptic curves in class 14.1-a over \(\Q(\sqrt{15}) \)

Isogeny class 14.1-a contains 3 curves linked by isogenies of degrees dividing 9.

Curve label Weierstrass Coefficients
14.1-a1 \( \bigl[a\) , \( 1\) , \( 1\) , \( 5060 a - 19593\) , \( 393664 a - 1524653\bigr] \)
14.1-a2 \( \bigl[a\) , \( 1\) , \( 1\) , \( 90 a - 343\) , \( 152 a - 585\bigr] \)
14.1-a3 \( \bigl[a\) , \( 1\) , \( 1\) , \( 5010 a - 19398\) , \( -371997 a + 1440742\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph