Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
20.1-a1 20.1-a \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.772687765$ 2.059677057 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -71 a - 272\) , \( -1174 a - 4546\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-71a-272\right){x}-1174a-4546$
20.1-a2 20.1-a \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $15.95418988$ 2.059677057 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 9 a + 38\) , \( 40 a + 156\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(9a+38\right){x}+40a+156$
20.1-a3 20.1-a \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $31.90837977$ 2.059677057 \( \frac{16384}{5} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -42 a - 160\) , \( 274 a + 1062\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-42a-160\right){x}+274a+1062$
20.1-a4 20.1-a \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.545375530$ 2.059677057 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -1322 a - 5120\) , \( -49390 a - 191290\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1322a-5120\right){x}-49390a-191290$
20.1-b1 20.1-b \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 1.335360080 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -75 a - 283\) , \( 956 a + 3708\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-75a-283\right){x}+956a+3708$
20.1-b2 20.1-b \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 1.335360080 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 5 a + 27\) , \( -18 a - 64\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(5a+27\right){x}-18a-64$
20.1-b3 20.1-b \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 1.335360080 \( \frac{16384}{5} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -42 a - 160\) , \( -274 a - 1062\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-42a-160\right){x}-274a-1062$
20.1-b4 20.1-b \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 1.335360080 \( \frac{488095744}{125} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -1322 a - 5120\) , \( 49390 a + 191290\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-1322a-5120\right){x}+49390a+191290$
20.1-c1 20.1-c \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.957327600$ $10.34365470$ 2.613737142 \( -\frac{20720464}{15625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -36\) , \( 140\bigr] \) ${y}^2={x}^{3}-{x}^{2}-36{x}+140$
20.1-c2 20.1-c \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.652442533$ $10.34365470$ 2.613737142 \( \frac{21296}{25} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 4\) , \( -4\bigr] \) ${y}^2={x}^{3}-{x}^{2}+4{x}-4$
20.1-c3 20.1-c \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.326221266$ $20.68730941$ 2.613737142 \( \frac{16384}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-{x}$
20.1-c4 20.1-c \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.978663800$ $20.68730941$ 2.613737142 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -41\) , \( 116\bigr] \) ${y}^2={x}^{3}-{x}^{2}-41{x}+116$
20.1-d1 20.1-d \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.569157173$ $1.772687765$ 1.732224375 \( -\frac{20720464}{15625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -36\) , \( -140\bigr] \) ${y}^2={x}^{3}+{x}^{2}-36{x}-140$
20.1-d2 20.1-d \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $2.523052391$ $15.95418988$ 1.732224375 \( \frac{21296}{25} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4\) , \( 4\bigr] \) ${y}^2={x}^{3}+{x}^{2}+4{x}+4$
20.1-d3 20.1-d \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $1.261526195$ $31.90837977$ 1.732224375 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-{x}$
20.1-d4 20.1-d \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.784578586$ $3.545375530$ 1.732224375 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^{3}+{x}^{2}-41{x}-116$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.