Base field \(\Q(\sqrt{5}) \)
Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(3 \phi + 1 : -6 \phi - 5 : 1\right)$ | $0.15364003501329447809907699066297281167$ | $\infty$ |
| $\left(0 : -\phi : 1\right)$ | $0$ | $3$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((45)\) | = | \((-2\phi+1)^{2}\cdot(3)^{2}\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 2025 \) | = | \(5^{2}\cdot9^{2}\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $675$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((675)\) | = | \((-2\phi+1)^{4}\cdot(3)^{3}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 455625 \) | = | \(5^{4}\cdot9^{3}\) |
|
| |||||
| j-invariant: | $j$ | = | \( 0 \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[(1+\sqrt{-3})/2]\) (potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.15364003501329447809907699066297281167 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.307280070026588956198153981325945623340 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 16.426612503340668909283210086800191921 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 6 \) = \(3\cdot2\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(3\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.5048948097335254003326907100197594375 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}1.504894810 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 16.426613 \cdot 0.307280 \cdot 6 } { {3^2 \cdot 2.236068} } \\ & \approx 1.504894810 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((-2\phi+1)\) | \(5\) | \(3\) | \(IV\) | Additive | \(-1\) | \(2\) | \(4\) | \(0\) |
| \((3)\) | \(9\) | \(2\) | \(III\) | Additive | \(1\) | \(2\) | \(3\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(3\) | 3B.1.2 |
| \(5\) | 5Cs[2] |
For all other primes \(p\), the image is the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3, 5 and 15.
Its isogeny class
2025.1-d
consists of curves linked by isogenies of
degrees dividing 75.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
| Base field | Curve |
|---|---|
| \(\Q\) | 225.c2 |
| \(\Q\) | 225.d2 |