Learn more

Refine search


Results (1-50 of 9713 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
31.1-a1 31.1-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 51.5088397151.50883971 0.359928959 10620831a+5145531 -\frac{106208}{31} a + \frac{51455}{31} [1 \bigl[1 , ϕ+1 \phi + 1 , ϕ \phi , ϕ \phi , 0] 0\bigr] y2+xy+ϕy=x3+(ϕ+1)x2+ϕx{y}^2+{x}{y}+\phi{y}={x}^{3}+\left(\phi+1\right){x}^{2}+\phi{x}
31.1-a2 31.1-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6096512411.609651241 0.359928959 61725871986044215714961a+99874558858644938523961 -\frac{61725871986044215714}{961} a + \frac{99874558858644938523}{961} [ϕ \bigl[\phi , 1 -1 , ϕ+1 \phi + 1 , 133ϕ141 133 \phi - 141 , 737ϕ764] 737 \phi - 764\bigr] y2+ϕxy+(ϕ+1)y=x3x2+(133ϕ141)x+737ϕ764{y}^2+\phi{x}{y}+\left(\phi+1\right){y}={x}^{3}-{x}^{2}+\left(133\phi-141\right){x}+737\phi-764
31.1-a3 31.1-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 6.4386049646.438604964 0.359928959 156520379364360923521a+253260256463213923521 -\frac{156520379364360}{923521} a + \frac{253260256463213}{923521} [ϕ \bigl[\phi , 1 -1 , ϕ+1 \phi + 1 , 12ϕ21 -12 \phi - 21 , 42ϕ+10] 42 \phi + 10\bigr] y2+ϕxy+(ϕ+1)y=x3x2+(12ϕ21)x+42ϕ+10{y}^2+\phi{x}{y}+\left(\phi+1\right){y}={x}^{3}-{x}^{2}+\left(-12\phi-21\right){x}+42\phi+10
31.1-a4 31.1-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6096512411.609651241 0.359928959 11889611722383394852891037441a8629385062119691852891037441 \frac{11889611722383394}{852891037441} a - \frac{8629385062119691}{852891037441} [1 \bigl[1 , ϕ+1 \phi + 1 , ϕ \phi , 31ϕ75 31 \phi - 75 , 141ϕ303] 141 \phi - 303\bigr] y2+xy+ϕy=x3+(ϕ+1)x2+(31ϕ75)x+141ϕ303{y}^2+{x}{y}+\phi{y}={x}^{3}+\left(\phi+1\right){x}^{2}+\left(31\phi-75\right){x}+141\phi-303
31.1-a5 31.1-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 25.7544198525.75441985 0.359928959 9029272560961a+5599830233961 \frac{9029272560}{961} a + \frac{5599830233}{961} [1 \bigl[1 , ϕ+1 \phi + 1 , ϕ \phi , ϕ5 \phi - 5 , 3ϕ5] 3 \phi - 5\bigr] y2+xy+ϕy=x3+(ϕ+1)x2+(ϕ5)x+3ϕ5{y}^2+{x}{y}+\phi{y}={x}^{3}+\left(\phi+1\right){x}^{2}+\left(\phi-5\right){x}+3\phi-5
31.1-a6 31.1-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 12.8772099212.87720992 0.359928959 613070373073944831a+378898328055359731 \frac{6130703730739448}{31} a + \frac{3788983280553597}{31} [ϕ+1 \bigl[\phi + 1 , ϕ+1 -\phi + 1 , ϕ \phi , 18ϕ+15 -18 \phi + 15 , 171ϕ265] 171 \phi - 265\bigr] y2+(ϕ+1)xy+ϕy=x3+(ϕ+1)x2+(18ϕ+15)x+171ϕ265{y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-18\phi+15\right){x}+171\phi-265
31.2-a1 31.2-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6096512411.609651241 0.359928959 11889611722383394852891037441a+3260226660263703852891037441 -\frac{11889611722383394}{852891037441} a + \frac{3260226660263703}{852891037441} [1 \bigl[1 , ϕ1 -\phi - 1 , ϕ \phi , 30ϕ45 -30 \phi - 45 , 111ϕ117] -111 \phi - 117\bigr] y2+xy+ϕy=x3+(ϕ1)x2+(30ϕ45)x111ϕ117{y}^2+{x}{y}+\phi{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-30\phi-45\right){x}-111\phi-117
31.2-a2 31.2-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 12.8772099212.87720992 0.359928959 613070373073944831a+991968701129304531 -\frac{6130703730739448}{31} a + \frac{9919687011293045}{31} [ϕ \bigl[\phi , 1 1 , ϕ+1 \phi + 1 , 16ϕ2 16 \phi - 2 , 172ϕ94] -172 \phi - 94\bigr] y2+ϕxy+(ϕ+1)y=x3+x2+(16ϕ2)x172ϕ94{y}^2+\phi{x}{y}+\left(\phi+1\right){y}={x}^{3}+{x}^{2}+\left(16\phi-2\right){x}-172\phi-94
31.2-a3 31.2-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 51.5088397151.50883971 0.359928959 10620831a5475331 \frac{106208}{31} a - \frac{54753}{31} [1 \bigl[1 , ϕ1 -\phi - 1 , ϕ \phi , 0 0 , 0] 0\bigr] y2+xy+ϕy=x3+(ϕ1)x2{y}^2+{x}{y}+\phi{y}={x}^{3}+\left(-\phi-1\right){x}^{2}
31.2-a4 31.2-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 25.7544198525.75441985 0.359928959 9029272560961a+14629102793961 -\frac{9029272560}{961} a + \frac{14629102793}{961} [1 \bigl[1 , ϕ1 -\phi - 1 , ϕ \phi , 5 -5 , 3ϕ+3] -3 \phi + 3\bigr] y2+xy+ϕy=x3+(ϕ1)x25x3ϕ+3{y}^2+{x}{y}+\phi{y}={x}^{3}+\left(-\phi-1\right){x}^{2}-5{x}-3\phi+3
31.2-a5 31.2-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 6.4386049646.438604964 0.359928959 156520379364360923521a+96739877098853923521 \frac{156520379364360}{923521} a + \frac{96739877098853}{923521} [ϕ+1 \bigl[\phi + 1 , ϕ1 -\phi - 1 , ϕ \phi , 10ϕ32 10 \phi - 32 , 43ϕ+53] -43 \phi + 53\bigr] y2+(ϕ+1)xy+ϕy=x3+(ϕ1)x2+(10ϕ32)x43ϕ+53{y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(10\phi-32\right){x}-43\phi+53
31.2-a6 31.2-a Q(5)\Q(\sqrt{5}) 31 31 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6096512411.609651241 0.359928959 61725871986044215714961a+38148686872600722809961 \frac{61725871986044215714}{961} a + \frac{38148686872600722809}{961} [ϕ+1 \bigl[\phi + 1 , ϕ1 -\phi - 1 , ϕ \phi , 135ϕ7 -135 \phi - 7 , 738ϕ26] -738 \phi - 26\bigr] y2+(ϕ+1)xy+ϕy=x3+(ϕ1)x2+(135ϕ7)x738ϕ26{y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-135\phi-7\right){x}-738\phi-26
36.1-a1 36.1-a Q(5)\Q(\sqrt{5}) 2232 2^{2} \cdot 3^{2} 0 Z/10Z\Z/10\Z SU(2)\mathrm{SU}(2) 11 44.2996216944.29962169 0.396227861 2438912 -\frac{24389}{12} [ϕ+1 \bigl[\phi + 1 , ϕ \phi , ϕ \phi , 0 0 , 0] 0\bigr] y2+(ϕ+1)xy+ϕy=x3+ϕx2{y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\phi{x}^{2}
36.1-a2 36.1-a Q(5)\Q(\sqrt{5}) 2232 2^{2} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7719848671.771984867 0.396227861 19465109248832 -\frac{19465109}{248832} [ϕ+1 \bigl[\phi + 1 , ϕ \phi , ϕ \phi , 5ϕ5 -5 \phi - 5 , 51ϕ37] -51 \phi - 37\bigr] y2+(ϕ+1)xy+ϕy=x3+ϕx2+(5ϕ5)x51ϕ37{y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\phi{x}^{2}+\left(-5\phi-5\right){x}-51\phi-37
36.1-a3 36.1-a Q(5)\Q(\sqrt{5}) 2232 2^{2} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7719848671.771984867 0.396227861 5022702913491889568 \frac{502270291349}{1889568} [ϕ \bigl[\phi , ϕ1 \phi - 1 , ϕ \phi , 165ϕ331 165 \phi - 331 , 1352ϕ2408] 1352 \phi - 2408\bigr] y2+ϕxy+ϕy=x3+(ϕ1)x2+(165ϕ331)x+1352ϕ2408{y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(165\phi-331\right){x}+1352\phi-2408
36.1-a4 36.1-a Q(5)\Q(\sqrt{5}) 2232 2^{2} \cdot 3^{2} 0 Z/10Z\Z/10\Z SU(2)\mathrm{SU}(2) 11 44.2996216944.29962169 0.396227861 13187222918 \frac{131872229}{18} [ϕ \bigl[\phi , ϕ1 \phi - 1 , ϕ \phi , 10ϕ21 10 \phi - 21 , 31ϕ+51] -31 \phi + 51\bigr] y2+ϕxy+ϕy=x3+(ϕ1)x2+(10ϕ21)x31ϕ+51{y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(10\phi-21\right){x}-31\phi+51
41.1-a1 41.1-a Q(5)\Q(\sqrt{5}) 41 41 0 Z/7Z\Z/7\Z SU(2)\mathrm{SU}(2) 11 46.2608784646.26087846 0.422214159 17612841a11059241 -\frac{176128}{41} a - \frac{110592}{41} [0 \bigl[0 , ϕ -\phi , ϕ \phi , 0 0 , 0] 0\bigr] y2+ϕy=x3ϕx2{y}^2+\phi{y}={x}^{3}-\phi{x}^{2}
41.1-a2 41.1-a Q(5)\Q(\sqrt{5}) 41 41 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.9440995600.944099560 0.422214159 7215644871110656194754273881a11892928131395584194754273881 \frac{7215644871110656}{194754273881} a - \frac{11892928131395584}{194754273881} [0 \bigl[0 , ϕ -\phi , ϕ \phi , 10ϕ40 10 \phi - 40 , 31ϕ113] 31 \phi - 113\bigr] y2+ϕy=x3ϕx2+(10ϕ40)x+31ϕ113{y}^2+\phi{y}={x}^{3}-\phi{x}^{2}+\left(10\phi-40\right){x}+31\phi-113
41.2-a1 41.2-a Q(5)\Q(\sqrt{5}) 41 41 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.9440995600.944099560 0.422214159 7215644871110656194754273881a4677283260284928194754273881 -\frac{7215644871110656}{194754273881} a - \frac{4677283260284928}{194754273881} [0 \bigl[0 , ϕ1 \phi - 1 , ϕ+1 \phi + 1 , 10ϕ30 -10 \phi - 30 , 32ϕ82] -32 \phi - 82\bigr] y2+(ϕ+1)y=x3+(ϕ1)x2+(10ϕ30)x32ϕ82{y}^2+\left(\phi+1\right){y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-10\phi-30\right){x}-32\phi-82
41.2-a2 41.2-a Q(5)\Q(\sqrt{5}) 41 41 0 Z/7Z\Z/7\Z SU(2)\mathrm{SU}(2) 11 46.2608784646.26087846 0.422214159 17612841a28672041 \frac{176128}{41} a - \frac{286720}{41} [0 \bigl[0 , ϕ1 \phi - 1 , ϕ+1 \phi + 1 , 0 0 , ϕ] -\phi\bigr] y2+(ϕ+1)y=x3+(ϕ1)x2ϕ{y}^2+\left(\phi+1\right){y}={x}^{3}+\left(\phi-1\right){x}^{2}-\phi
45.1-a1 45.1-a Q(5)\Q(\sqrt{5}) 325 3^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1226055550.122605555 0.438646969 15240967211348506945384736245a+24660402969384586336670116145 -\frac{152409672113485069453847362}{45} a + \frac{246604029693845863366701161}{45} [ϕ \bigl[\phi , ϕ+1 \phi + 1 , 1 1 , 4364ϕ7739 -4364 \phi - 7739 , 255406ϕ296465] -255406 \phi - 296465\bigr] y2+ϕxy+y=x3+(ϕ+1)x2+(4364ϕ7739)x255406ϕ296465{y}^2+\phi{x}{y}+{y}={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-4364\phi-7739\right){x}-255406\phi-296465
45.1-a2 45.1-a Q(5)\Q(\sqrt{5}) 325 3^{2} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.4904222200.490422220 0.438646969 147281603041215233605 -\frac{147281603041}{215233605} [1 \bigl[1 , 1 1 , 1 1 , 110 -110 , 880] -880\bigr] y2+xy+y=x3+x2110x880{y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-110{x}-880
45.1-a3 45.1-a Q(5)\Q(\sqrt{5}) 325 3^{2} \cdot 5 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 31.3870221131.38702211 0.438646969 115 -\frac{1}{15} [1 \bigl[1 , 1 1 , 1 1 , 0 0 , 0] 0\bigr] y2+xy+y=x3+x2{y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}
45.1-a4 45.1-a Q(5)\Q(\sqrt{5}) 325 3^{2} \cdot 5 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 1.9616888821.961688882 0.438646969 47331698393515625 \frac{4733169839}{3515625} [1 \bigl[1 , 1 1 , 1 1 , 35 35 , 28] -28\bigr] y2+xy+y=x3+x2+35x28{y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+35{x}-28
45.1-a5 45.1-a Q(5)\Q(\sqrt{5}) 325 3^{2} \cdot 5 0 Z/2ZZ/8Z\Z/2\Z\oplus\Z/8\Z SU(2)\mathrm{SU}(2) 11 7.8467555287.846755528 0.438646969 11128464150625 \frac{111284641}{50625} [1 \bigl[1 , 1 1 , 1 1 , 10 -10 , 10] -10\bigr] y2+xy+y=x3+x210x10{y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-10{x}-10
45.1-a6 45.1-a Q(5)\Q(\sqrt{5}) 325 3^{2} \cdot 5 0 Z/2ZZ/8Z\Z/2\Z\oplus\Z/8\Z SU(2)\mathrm{SU}(2) 11 31.3870221131.38702211 0.438646969 13997521225 \frac{13997521}{225} [1 \bigl[1 , 1 1 , 1 1 , 5 -5 , 2] 2\bigr] y2+xy+y=x3+x25x+2{y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-5{x}+2
45.1-a7 45.1-a Q(5)\Q(\sqrt{5}) 325 3^{2} \cdot 5 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.9616888821.961688882 0.438646969 272223782641164025 \frac{272223782641}{164025} [1 \bigl[1 , 1 1 , 1 1 , 135 -135 , 660] -660\bigr] y2+xy+y=x3+x2135x660{y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-135{x}-660
45.1-a8 45.1-a Q(5)\Q(\sqrt{5}) 325 3^{2} \cdot 5 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 31.3870221131.38702211 0.438646969 5666735232115 \frac{56667352321}{15} [1 \bigl[1 , 1 1 , 1 1 , 80 -80 , 242] 242\bigr] y2+xy+y=x3+x280x+242{y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-80{x}+242
45.1-a9 45.1-a Q(5)\Q(\sqrt{5}) 325 3^{2} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4904222200.490422220 0.438646969 1114544804970241405 \frac{1114544804970241}{405} [1 \bigl[1 , 1 1 , 1 1 , 2160 -2160 , 39540] -39540\bigr] y2+xy+y=x3+x22160x39540{y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-2160{x}-39540
45.1-a10 45.1-a Q(5)\Q(\sqrt{5}) 325 3^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1226055550.122605555 0.438646969 15240967211348506945384736245a+9419435758036079391285379945 \frac{152409672113485069453847362}{45} a + \frac{94194357580360793912853799}{45} [ϕ+1 \bigl[\phi + 1 , ϕ1 \phi - 1 , ϕ+1 \phi + 1 , 4364ϕ12105 4364 \phi - 12105 , 243301ϕ535402] 243301 \phi - 535402\bigr] y2+(ϕ+1)xy+(ϕ+1)y=x3+(ϕ1)x2+(4364ϕ12105)x+243301ϕ535402{y}^2+\left(\phi+1\right){x}{y}+\left(\phi+1\right){y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(4364\phi-12105\right){x}+243301\phi-535402
49.1-a1 49.1-a Q(5)\Q(\sqrt{5}) 72 7^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.0454481921.045448192 0.467538645 288755302416807 -\frac{2887553024}{16807} [0 \bigl[0 , ϕ+1 -\phi + 1 , 1 1 , 30ϕ29 -30 \phi - 29 , 102ϕ84] -102 \phi - 84\bigr] y2+y=x3+(ϕ+1)x2+(30ϕ29)x102ϕ84{y}^2+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-30\phi-29\right){x}-102\phi-84
49.1-a2 49.1-a Q(5)\Q(\sqrt{5}) 72 7^{2} 0 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 11 26.1362048226.13620482 0.467538645 40967 \frac{4096}{7} [0 \bigl[0 , ϕ \phi , 1 1 , 1 1 , 0] 0\bigr] y2+y=x3+ϕx2+x{y}^2+{y}={x}^{3}+\phi{x}^{2}+{x}
55.1-a1 55.1-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 19.8670757419.86707574 0.493601465 62628390588638773205a+101334862696599173205 -\frac{626283905886387}{73205} a + \frac{1013348626965991}{73205} [1 \bigl[1 , ϕ+1 -\phi + 1 , 1 1 , 9ϕ25 9 \phi - 25 , 6ϕ+44] -6 \phi + 44\bigr] y2+xy+y=x3+(ϕ+1)x2+(9ϕ25)x6ϕ+44{y}^2+{x}{y}+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(9\phi-25\right){x}-6\phi+44
55.1-a2 55.1-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.2074528602.207452860 0.493601465 11427830730362690778460709418025a+20360337803608823678460709418025 -\frac{114278307303626907}{78460709418025} a + \frac{203603378036088236}{78460709418025} [1 \bigl[1 , ϕ+1 -\phi + 1 , 1 1 , 54ϕ 54 \phi , 374ϕ198] -374 \phi - 198\bigr] y2+xy+y=x3+(ϕ+1)x2+54ϕx374ϕ198{y}^2+{x}{y}+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+54\phi{x}-374\phi-198
55.1-a3 55.1-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 39.7341514839.73415148 0.493601465 4522755a+2697955 \frac{45227}{55} a + \frac{26979}{55} [ϕ+1 \bigl[\phi + 1 , 0 0 , ϕ+1 \phi + 1 , ϕ1 -\phi - 1 , ϕ] -\phi\bigr] y2+(ϕ+1)xy+(ϕ+1)y=x3+(ϕ1)xϕ{y}^2+\left(\phi+1\right){x}{y}+\left(\phi+1\right){y}={x}^{3}+\left(-\phi-1\right){x}-\phi
55.1-a4 55.1-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.4149057214.414905721 0.493601465 1485675267531221445125a+4152064659709221445125 -\frac{1485675267531}{221445125} a + \frac{4152064659709}{221445125} [1 \bigl[1 , ϕ+1 -\phi + 1 , 1 1 , 21ϕ25 -21 \phi - 25 , 54ϕ58] -54 \phi - 58\bigr] y2+xy+y=x3+(ϕ+1)x2+(21ϕ25)x54ϕ58{y}^2+{x}{y}+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-21\phi-25\right){x}-54\phi-58
55.1-a5 55.1-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.2074528602.207452860 0.493601465 456028242093676720796875a+737886056174161220796875 -\frac{4560282420936767}{20796875} a + \frac{7378860561741612}{20796875} [1 \bigl[1 , ϕ+1 -\phi + 1 , 1 1 , 16ϕ210 -16 \phi - 210 , 1110ϕ534] 1110 \phi - 534\bigr] y2+xy+y=x3+(ϕ+1)x2+(16ϕ210)x+1110ϕ534{y}^2+{x}{y}+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-16\phi-210\right){x}+1110\phi-534
55.1-a6 55.1-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z SU(2)\mathrm{SU}(2) 11 39.7341514839.73415148 0.493601465 132583563605a+166070482605 \frac{132583563}{605} a + \frac{166070482}{605} [ϕ+1 \bigl[\phi + 1 , 0 0 , ϕ+1 \phi + 1 , 4ϕ11 4 \phi - 11 , 9ϕ+13] -9 \phi + 13\bigr] y2+(ϕ+1)xy+(ϕ+1)y=x3+(4ϕ11)x9ϕ+13{y}^2+\left(\phi+1\right){x}{y}+\left(\phi+1\right){y}={x}^{3}+\left(4\phi-11\right){x}-9\phi+13
55.1-a7 55.1-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.4149057214.414905721 0.493601465 75490438177733275a+46655715045433275 \frac{754904381777}{33275} a + \frac{466557150454}{33275} [ϕ+1 \bigl[\phi + 1 , 0 0 , ϕ+1 \phi + 1 , 6ϕ1 -6 \phi - 1 , ϕ17] \phi - 17\bigr] y2+(ϕ+1)xy+(ϕ+1)y=x3+(6ϕ1)x+ϕ17{y}^2+\left(\phi+1\right){x}{y}+\left(\phi+1\right){y}={x}^{3}+\left(-6\phi-1\right){x}+\phi-17
55.1-a8 55.1-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 19.8670757419.86707574 0.493601465 48555143354501275a+30008729421823275 \frac{48555143354501}{275} a + \frac{30008729421823}{275} [ϕ+1 \bigl[\phi + 1 , 0 0 , ϕ+1 \phi + 1 , 6ϕ26 -6 \phi - 26 , 28ϕ+8] 28 \phi + 8\bigr] y2+(ϕ+1)xy+(ϕ+1)y=x3+(6ϕ26)x+28ϕ+8{y}^2+\left(\phi+1\right){x}{y}+\left(\phi+1\right){y}={x}^{3}+\left(-6\phi-26\right){x}+28\phi+8
55.2-a1 55.2-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 39.7341514839.73415148 0.493601465 4522755a+7220655 -\frac{45227}{55} a + \frac{72206}{55} [ϕ \bigl[\phi , ϕ+1 -\phi + 1 , ϕ \phi , ϕ -\phi , 0] 0\bigr] y2+ϕxy+ϕy=x3+(ϕ+1)x2ϕx{y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(-\phi+1\right){x}^{2}-\phi{x}
55.2-a2 55.2-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.4149057214.414905721 0.493601465 75490438177733275a+122146153223133275 -\frac{754904381777}{33275} a + \frac{1221461532231}{33275} [ϕ \bigl[\phi , ϕ+1 -\phi + 1 , ϕ \phi , 4ϕ5 4 \phi - 5 , 2ϕ15] -2 \phi - 15\bigr] y2+ϕxy+ϕy=x3+(ϕ+1)x2+(4ϕ5)x2ϕ15{y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(4\phi-5\right){x}-2\phi-15
55.2-a3 55.2-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 19.8670757419.86707574 0.493601465 48555143354501275a+78563872776324275 -\frac{48555143354501}{275} a + \frac{78563872776324}{275} [ϕ \bigl[\phi , ϕ+1 -\phi + 1 , ϕ \phi , 4ϕ30 4 \phi - 30 , 29ϕ+37] -29 \phi + 37\bigr] y2+ϕxy+ϕy=x3+(ϕ+1)x2+(4ϕ30)x29ϕ+37{y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(4\phi-30\right){x}-29\phi+37
55.2-a4 55.2-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.2074528602.207452860 0.493601465 11427830730362690778460709418025a+8932507073246132978460709418025 \frac{114278307303626907}{78460709418025} a + \frac{89325070732461329}{78460709418025} [1 \bigl[1 , ϕ \phi , 1 1 , 54ϕ+54 -54 \phi + 54 , 374ϕ572] 374 \phi - 572\bigr] y2+xy+y=x3+ϕx2+(54ϕ+54)x+374ϕ572{y}^2+{x}{y}+{y}={x}^{3}+\phi{x}^{2}+\left(-54\phi+54\right){x}+374\phi-572
55.2-a5 55.2-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.4149057214.414905721 0.493601465 1485675267531221445125a+2666389392178221445125 \frac{1485675267531}{221445125} a + \frac{2666389392178}{221445125} [1 \bigl[1 , ϕ \phi , 1 1 , 21ϕ46 21 \phi - 46 , 54ϕ112] 54 \phi - 112\bigr] y2+xy+y=x3+ϕx2+(21ϕ46)x+54ϕ112{y}^2+{x}{y}+{y}={x}^{3}+\phi{x}^{2}+\left(21\phi-46\right){x}+54\phi-112
55.2-a6 55.2-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z SU(2)\mathrm{SU}(2) 11 39.7341514839.73415148 0.493601465 132583563605a+59730809121 -\frac{132583563}{605} a + \frac{59730809}{121} [ϕ \bigl[\phi , ϕ+1 -\phi + 1 , ϕ \phi , 6ϕ5 -6 \phi - 5 , 8ϕ+5] 8 \phi + 5\bigr] y2+ϕxy+ϕy=x3+(ϕ+1)x2+(6ϕ5)x+8ϕ+5{y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-6\phi-5\right){x}+8\phi+5
55.2-a7 55.2-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.2074528602.207452860 0.493601465 456028242093676720796875a+5637156281609694159375 \frac{4560282420936767}{20796875} a + \frac{563715628160969}{4159375} [1 \bigl[1 , ϕ \phi , 1 1 , 16ϕ226 16 \phi - 226 , 1110ϕ+576] -1110 \phi + 576\bigr] y2+xy+y=x3+ϕx2+(16ϕ226)x1110ϕ+576{y}^2+{x}{y}+{y}={x}^{3}+\phi{x}^{2}+\left(16\phi-226\right){x}-1110\phi+576
55.2-a8 55.2-a Q(5)\Q(\sqrt{5}) 511 5 \cdot 11 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 19.8670757419.86707574 0.493601465 62628390588638773205a+38706472107960473205 \frac{626283905886387}{73205} a + \frac{387064721079604}{73205} [1 \bigl[1 , ϕ \phi , 1 1 , 9ϕ16 -9 \phi - 16 , 6ϕ+38] 6 \phi + 38\bigr] y2+xy+y=x3+ϕx2+(9ϕ16)x+6ϕ+38{y}^2+{x}{y}+{y}={x}^{3}+\phi{x}^{2}+\left(-9\phi-16\right){x}+6\phi+38
64.1-a1 64.1-a Q(5)\Q(\sqrt{5}) 26 2^{6} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.3974174742.397417474 0.536078844 2711191688a+4386800300 -2711191688 a + 4386800300 [0 \bigl[0 , ϕ1 \phi - 1 , 0 0 , 14ϕ25 14 \phi - 25 , ϕ59] \phi - 59\bigr] y2=x3+(ϕ1)x2+(14ϕ25)x+ϕ59{y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(14\phi-25\right){x}+\phi-59
64.1-a2 64.1-a Q(5)\Q(\sqrt{5}) 26 2^{6} 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 19.1793397919.17933979 0.536078844 548896a+889584 -548896 a + 889584 [0 \bigl[0 , ϕ1 \phi - 1 , 0 0 , 4ϕ 4 \phi , 4] 4\bigr] y2=x3+(ϕ1)x2+4ϕx+4{y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+4\phi{x}+4
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.