31.1-a1
31.1-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.1
31 31 3 1
− 31 -31 − 3 1
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 2 ) (5a-2) ( 5 a − 2 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
51.50883971 51.50883971 5 1 . 5 0 8 8 3 9 7 1
0.359928959
− 106208 31 a + 51455 31 -\frac{106208}{31} a + \frac{51455}{31} − 3 1 1 0 6 2 0 8 a + 3 1 5 1 4 5 5
[ 1 \bigl[1 [ 1 , ϕ + 1 \phi + 1 ϕ + 1 , ϕ \phi ϕ , ϕ \phi ϕ , 0 ] 0\bigr] 0 ]
y 2 + x y + ϕ y = x 3 + ( ϕ + 1 ) x 2 + ϕ x {y}^2+{x}{y}+\phi{y}={x}^{3}+\left(\phi+1\right){x}^{2}+\phi{x} y 2 + x y + ϕ y = x 3 + ( ϕ + 1 ) x 2 + ϕ x
31.1-a2
31.1-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.1
31 31 3 1
− 3 1 2 - 31^{2} − 3 1 2
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 2 ) (5a-2) ( 5 a − 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
1.609651241 1.609651241 1 . 6 0 9 6 5 1 2 4 1
0.359928959
− 61725871986044215714 961 a + 99874558858644938523 961 -\frac{61725871986044215714}{961} a + \frac{99874558858644938523}{961} − 9 6 1 6 1 7 2 5 8 7 1 9 8 6 0 4 4 2 1 5 7 1 4 a + 9 6 1 9 9 8 7 4 5 5 8 8 5 8 6 4 4 9 3 8 5 2 3
[ ϕ \bigl[\phi [ ϕ , − 1 -1 − 1 , ϕ + 1 \phi + 1 ϕ + 1 , 133 ϕ − 141 133 \phi - 141 1 3 3 ϕ − 1 4 1 , 737 ϕ − 764 ] 737 \phi - 764\bigr] 7 3 7 ϕ − 7 6 4 ]
y 2 + ϕ x y + ( ϕ + 1 ) y = x 3 − x 2 + ( 133 ϕ − 141 ) x + 737 ϕ − 764 {y}^2+\phi{x}{y}+\left(\phi+1\right){y}={x}^{3}-{x}^{2}+\left(133\phi-141\right){x}+737\phi-764 y 2 + ϕ x y + ( ϕ + 1 ) y = x 3 − x 2 + ( 1 3 3 ϕ − 1 4 1 ) x + 7 3 7 ϕ − 7 6 4
31.1-a3
31.1-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.1
31 31 3 1
3 1 4 31^{4} 3 1 4
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 2 ) (5a-2) ( 5 a − 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
6.438604964 6.438604964 6 . 4 3 8 6 0 4 9 6 4
0.359928959
− 156520379364360 923521 a + 253260256463213 923521 -\frac{156520379364360}{923521} a + \frac{253260256463213}{923521} − 9 2 3 5 2 1 1 5 6 5 2 0 3 7 9 3 6 4 3 6 0 a + 9 2 3 5 2 1 2 5 3 2 6 0 2 5 6 4 6 3 2 1 3
[ ϕ \bigl[\phi [ ϕ , − 1 -1 − 1 , ϕ + 1 \phi + 1 ϕ + 1 , − 12 ϕ − 21 -12 \phi - 21 − 1 2 ϕ − 2 1 , 42 ϕ + 10 ] 42 \phi + 10\bigr] 4 2 ϕ + 1 0 ]
y 2 + ϕ x y + ( ϕ + 1 ) y = x 3 − x 2 + ( − 12 ϕ − 21 ) x + 42 ϕ + 10 {y}^2+\phi{x}{y}+\left(\phi+1\right){y}={x}^{3}-{x}^{2}+\left(-12\phi-21\right){x}+42\phi+10 y 2 + ϕ x y + ( ϕ + 1 ) y = x 3 − x 2 + ( − 1 2 ϕ − 2 1 ) x + 4 2 ϕ + 1 0
31.1-a4
31.1-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.1
31 31 3 1
− 3 1 8 - 31^{8} − 3 1 8
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 2 ) (5a-2) ( 5 a − 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
1.609651241 1.609651241 1 . 6 0 9 6 5 1 2 4 1
0.359928959
11889611722383394 852891037441 a − 8629385062119691 852891037441 \frac{11889611722383394}{852891037441} a - \frac{8629385062119691}{852891037441} 8 5 2 8 9 1 0 3 7 4 4 1 1 1 8 8 9 6 1 1 7 2 2 3 8 3 3 9 4 a − 8 5 2 8 9 1 0 3 7 4 4 1 8 6 2 9 3 8 5 0 6 2 1 1 9 6 9 1
[ 1 \bigl[1 [ 1 , ϕ + 1 \phi + 1 ϕ + 1 , ϕ \phi ϕ , 31 ϕ − 75 31 \phi - 75 3 1 ϕ − 7 5 , 141 ϕ − 303 ] 141 \phi - 303\bigr] 1 4 1 ϕ − 3 0 3 ]
y 2 + x y + ϕ y = x 3 + ( ϕ + 1 ) x 2 + ( 31 ϕ − 75 ) x + 141 ϕ − 303 {y}^2+{x}{y}+\phi{y}={x}^{3}+\left(\phi+1\right){x}^{2}+\left(31\phi-75\right){x}+141\phi-303 y 2 + x y + ϕ y = x 3 + ( ϕ + 1 ) x 2 + ( 3 1 ϕ − 7 5 ) x + 1 4 1 ϕ − 3 0 3
31.1-a5
31.1-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.1
31 31 3 1
3 1 2 31^{2} 3 1 2
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 2 ) (5a-2) ( 5 a − 2 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
25.75441985 25.75441985 2 5 . 7 5 4 4 1 9 8 5
0.359928959
9029272560 961 a + 5599830233 961 \frac{9029272560}{961} a + \frac{5599830233}{961} 9 6 1 9 0 2 9 2 7 2 5 6 0 a + 9 6 1 5 5 9 9 8 3 0 2 3 3
[ 1 \bigl[1 [ 1 , ϕ + 1 \phi + 1 ϕ + 1 , ϕ \phi ϕ , ϕ − 5 \phi - 5 ϕ − 5 , 3 ϕ − 5 ] 3 \phi - 5\bigr] 3 ϕ − 5 ]
y 2 + x y + ϕ y = x 3 + ( ϕ + 1 ) x 2 + ( ϕ − 5 ) x + 3 ϕ − 5 {y}^2+{x}{y}+\phi{y}={x}^{3}+\left(\phi+1\right){x}^{2}+\left(\phi-5\right){x}+3\phi-5 y 2 + x y + ϕ y = x 3 + ( ϕ + 1 ) x 2 + ( ϕ − 5 ) x + 3 ϕ − 5
31.1-a6
31.1-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.1
31 31 3 1
− 31 -31 − 3 1
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 2 ) (5a-2) ( 5 a − 2 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
12.87720992 12.87720992 1 2 . 8 7 7 2 0 9 9 2
0.359928959
6130703730739448 31 a + 3788983280553597 31 \frac{6130703730739448}{31} a + \frac{3788983280553597}{31} 3 1 6 1 3 0 7 0 3 7 3 0 7 3 9 4 4 8 a + 3 1 3 7 8 8 9 8 3 2 8 0 5 5 3 5 9 7
[ ϕ + 1 \bigl[\phi + 1 [ ϕ + 1 , − ϕ + 1 -\phi + 1 − ϕ + 1 , ϕ \phi ϕ , − 18 ϕ + 15 -18 \phi + 15 − 1 8 ϕ + 1 5 , 171 ϕ − 265 ] 171 \phi - 265\bigr] 1 7 1 ϕ − 2 6 5 ]
y 2 + ( ϕ + 1 ) x y + ϕ y = x 3 + ( − ϕ + 1 ) x 2 + ( − 18 ϕ + 15 ) x + 171 ϕ − 265 {y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-18\phi+15\right){x}+171\phi-265 y 2 + ( ϕ + 1 ) x y + ϕ y = x 3 + ( − ϕ + 1 ) x 2 + ( − 1 8 ϕ + 1 5 ) x + 1 7 1 ϕ − 2 6 5
31.2-a1
31.2-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.2
31 31 3 1
− 3 1 8 - 31^{8} − 3 1 8
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 3 ) (5a-3) ( 5 a − 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
1.609651241 1.609651241 1 . 6 0 9 6 5 1 2 4 1
0.359928959
− 11889611722383394 852891037441 a + 3260226660263703 852891037441 -\frac{11889611722383394}{852891037441} a + \frac{3260226660263703}{852891037441} − 8 5 2 8 9 1 0 3 7 4 4 1 1 1 8 8 9 6 1 1 7 2 2 3 8 3 3 9 4 a + 8 5 2 8 9 1 0 3 7 4 4 1 3 2 6 0 2 2 6 6 6 0 2 6 3 7 0 3
[ 1 \bigl[1 [ 1 , − ϕ − 1 -\phi - 1 − ϕ − 1 , ϕ \phi ϕ , − 30 ϕ − 45 -30 \phi - 45 − 3 0 ϕ − 4 5 , − 111 ϕ − 117 ] -111 \phi - 117\bigr] − 1 1 1 ϕ − 1 1 7 ]
y 2 + x y + ϕ y = x 3 + ( − ϕ − 1 ) x 2 + ( − 30 ϕ − 45 ) x − 111 ϕ − 117 {y}^2+{x}{y}+\phi{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-30\phi-45\right){x}-111\phi-117 y 2 + x y + ϕ y = x 3 + ( − ϕ − 1 ) x 2 + ( − 3 0 ϕ − 4 5 ) x − 1 1 1 ϕ − 1 1 7
31.2-a2
31.2-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.2
31 31 3 1
− 31 -31 − 3 1
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 3 ) (5a-3) ( 5 a − 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
12.87720992 12.87720992 1 2 . 8 7 7 2 0 9 9 2
0.359928959
− 6130703730739448 31 a + 9919687011293045 31 -\frac{6130703730739448}{31} a + \frac{9919687011293045}{31} − 3 1 6 1 3 0 7 0 3 7 3 0 7 3 9 4 4 8 a + 3 1 9 9 1 9 6 8 7 0 1 1 2 9 3 0 4 5
[ ϕ \bigl[\phi [ ϕ , 1 1 1 , ϕ + 1 \phi + 1 ϕ + 1 , 16 ϕ − 2 16 \phi - 2 1 6 ϕ − 2 , − 172 ϕ − 94 ] -172 \phi - 94\bigr] − 1 7 2 ϕ − 9 4 ]
y 2 + ϕ x y + ( ϕ + 1 ) y = x 3 + x 2 + ( 16 ϕ − 2 ) x − 172 ϕ − 94 {y}^2+\phi{x}{y}+\left(\phi+1\right){y}={x}^{3}+{x}^{2}+\left(16\phi-2\right){x}-172\phi-94 y 2 + ϕ x y + ( ϕ + 1 ) y = x 3 + x 2 + ( 1 6 ϕ − 2 ) x − 1 7 2 ϕ − 9 4
31.2-a3
31.2-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.2
31 31 3 1
− 31 -31 − 3 1
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 3 ) (5a-3) ( 5 a − 3 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
51.50883971 51.50883971 5 1 . 5 0 8 8 3 9 7 1
0.359928959
106208 31 a − 54753 31 \frac{106208}{31} a - \frac{54753}{31} 3 1 1 0 6 2 0 8 a − 3 1 5 4 7 5 3
[ 1 \bigl[1 [ 1 , − ϕ − 1 -\phi - 1 − ϕ − 1 , ϕ \phi ϕ , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + x y + ϕ y = x 3 + ( − ϕ − 1 ) x 2 {y}^2+{x}{y}+\phi{y}={x}^{3}+\left(-\phi-1\right){x}^{2} y 2 + x y + ϕ y = x 3 + ( − ϕ − 1 ) x 2
31.2-a4
31.2-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.2
31 31 3 1
3 1 2 31^{2} 3 1 2
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 3 ) (5a-3) ( 5 a − 3 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
25.75441985 25.75441985 2 5 . 7 5 4 4 1 9 8 5
0.359928959
− 9029272560 961 a + 14629102793 961 -\frac{9029272560}{961} a + \frac{14629102793}{961} − 9 6 1 9 0 2 9 2 7 2 5 6 0 a + 9 6 1 1 4 6 2 9 1 0 2 7 9 3
[ 1 \bigl[1 [ 1 , − ϕ − 1 -\phi - 1 − ϕ − 1 , ϕ \phi ϕ , − 5 -5 − 5 , − 3 ϕ + 3 ] -3 \phi + 3\bigr] − 3 ϕ + 3 ]
y 2 + x y + ϕ y = x 3 + ( − ϕ − 1 ) x 2 − 5 x − 3 ϕ + 3 {y}^2+{x}{y}+\phi{y}={x}^{3}+\left(-\phi-1\right){x}^{2}-5{x}-3\phi+3 y 2 + x y + ϕ y = x 3 + ( − ϕ − 1 ) x 2 − 5 x − 3 ϕ + 3
31.2-a5
31.2-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.2
31 31 3 1
3 1 4 31^{4} 3 1 4
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 3 ) (5a-3) ( 5 a − 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
6.438604964 6.438604964 6 . 4 3 8 6 0 4 9 6 4
0.359928959
156520379364360 923521 a + 96739877098853 923521 \frac{156520379364360}{923521} a + \frac{96739877098853}{923521} 9 2 3 5 2 1 1 5 6 5 2 0 3 7 9 3 6 4 3 6 0 a + 9 2 3 5 2 1 9 6 7 3 9 8 7 7 0 9 8 8 5 3
[ ϕ + 1 \bigl[\phi + 1 [ ϕ + 1 , − ϕ − 1 -\phi - 1 − ϕ − 1 , ϕ \phi ϕ , 10 ϕ − 32 10 \phi - 32 1 0 ϕ − 3 2 , − 43 ϕ + 53 ] -43 \phi + 53\bigr] − 4 3 ϕ + 5 3 ]
y 2 + ( ϕ + 1 ) x y + ϕ y = x 3 + ( − ϕ − 1 ) x 2 + ( 10 ϕ − 32 ) x − 43 ϕ + 53 {y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(10\phi-32\right){x}-43\phi+53 y 2 + ( ϕ + 1 ) x y + ϕ y = x 3 + ( − ϕ − 1 ) x 2 + ( 1 0 ϕ − 3 2 ) x − 4 3 ϕ + 5 3
31.2-a6
31.2-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
31.2
31 31 3 1
− 3 1 2 - 31^{2} − 3 1 2
0.47148 0.47148 0 . 4 7 1 4 8
( 5 a − 3 ) (5a-3) ( 5 a − 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
1.609651241 1.609651241 1 . 6 0 9 6 5 1 2 4 1
0.359928959
61725871986044215714 961 a + 38148686872600722809 961 \frac{61725871986044215714}{961} a + \frac{38148686872600722809}{961} 9 6 1 6 1 7 2 5 8 7 1 9 8 6 0 4 4 2 1 5 7 1 4 a + 9 6 1 3 8 1 4 8 6 8 6 8 7 2 6 0 0 7 2 2 8 0 9
[ ϕ + 1 \bigl[\phi + 1 [ ϕ + 1 , − ϕ − 1 -\phi - 1 − ϕ − 1 , ϕ \phi ϕ , − 135 ϕ − 7 -135 \phi - 7 − 1 3 5 ϕ − 7 , − 738 ϕ − 26 ] -738 \phi - 26\bigr] − 7 3 8 ϕ − 2 6 ]
y 2 + ( ϕ + 1 ) x y + ϕ y = x 3 + ( − ϕ − 1 ) x 2 + ( − 135 ϕ − 7 ) x − 738 ϕ − 26 {y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-135\phi-7\right){x}-738\phi-26 y 2 + ( ϕ + 1 ) x y + ϕ y = x 3 + ( − ϕ − 1 ) x 2 + ( − 1 3 5 ϕ − 7 ) x − 7 3 8 ϕ − 2 6
36.1-a1
36.1-a
4 4 4
10 10 1 0
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
36.1
2 2 ⋅ 3 2 2^{2} \cdot 3^{2} 2 2 ⋅ 3 2
2 4 ⋅ 3 2 2^{4} \cdot 3^{2} 2 4 ⋅ 3 2
0.48944 0.48944 0 . 4 8 9 4 4
( 2 ) , ( 3 ) (2), (3) ( 2 ) , ( 3 )
0
Z / 10 Z \Z/10\Z Z / 1 0 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 5 2, 5 2 , 5
2B , 5B.1.1[2]
1 1 1
2 2 2
1 1 1
44.29962169 44.29962169 4 4 . 2 9 9 6 2 1 6 9
0.396227861
− 24389 12 -\frac{24389}{12} − 1 2 2 4 3 8 9
[ ϕ + 1 \bigl[\phi + 1 [ ϕ + 1 , ϕ \phi ϕ , ϕ \phi ϕ , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + ( ϕ + 1 ) x y + ϕ y = x 3 + ϕ x 2 {y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\phi{x}^{2} y 2 + ( ϕ + 1 ) x y + ϕ y = x 3 + ϕ x 2
36.1-a2
36.1-a
4 4 4
10 10 1 0
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
36.1
2 2 ⋅ 3 2 2^{2} \cdot 3^{2} 2 2 ⋅ 3 2
2 20 ⋅ 3 10 2^{20} \cdot 3^{10} 2 2 0 ⋅ 3 1 0
0.48944 0.48944 0 . 4 8 9 4 4
( 2 ) , ( 3 ) (2), (3) ( 2 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 5 2, 5 2 , 5
2B , 5B.1.4[2]
1 1 1
2 2 2
1 1 1
1.771984867 1.771984867 1 . 7 7 1 9 8 4 8 6 7
0.396227861
− 19465109 248832 -\frac{19465109}{248832} − 2 4 8 8 3 2 1 9 4 6 5 1 0 9
[ ϕ + 1 \bigl[\phi + 1 [ ϕ + 1 , ϕ \phi ϕ , ϕ \phi ϕ , − 5 ϕ − 5 -5 \phi - 5 − 5 ϕ − 5 , − 51 ϕ − 37 ] -51 \phi - 37\bigr] − 5 1 ϕ − 3 7 ]
y 2 + ( ϕ + 1 ) x y + ϕ y = x 3 + ϕ x 2 + ( − 5 ϕ − 5 ) x − 51 ϕ − 37 {y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\phi{x}^{2}+\left(-5\phi-5\right){x}-51\phi-37 y 2 + ( ϕ + 1 ) x y + ϕ y = x 3 + ϕ x 2 + ( − 5 ϕ − 5 ) x − 5 1 ϕ − 3 7
36.1-a3
36.1-a
4 4 4
10 10 1 0
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
36.1
2 2 ⋅ 3 2 2^{2} \cdot 3^{2} 2 2 ⋅ 3 2
2 10 ⋅ 3 20 2^{10} \cdot 3^{20} 2 1 0 ⋅ 3 2 0
0.48944 0.48944 0 . 4 8 9 4 4
( 2 ) , ( 3 ) (2), (3) ( 2 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 5 2, 5 2 , 5
2B , 5B.1.4[2]
1 1 1
2 2 2
1 1 1
1.771984867 1.771984867 1 . 7 7 1 9 8 4 8 6 7
0.396227861
502270291349 1889568 \frac{502270291349}{1889568} 1 8 8 9 5 6 8 5 0 2 2 7 0 2 9 1 3 4 9
[ ϕ \bigl[\phi [ ϕ , ϕ − 1 \phi - 1 ϕ − 1 , ϕ \phi ϕ , 165 ϕ − 331 165 \phi - 331 1 6 5 ϕ − 3 3 1 , 1352 ϕ − 2408 ] 1352 \phi - 2408\bigr] 1 3 5 2 ϕ − 2 4 0 8 ]
y 2 + ϕ x y + ϕ y = x 3 + ( ϕ − 1 ) x 2 + ( 165 ϕ − 331 ) x + 1352 ϕ − 2408 {y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(165\phi-331\right){x}+1352\phi-2408 y 2 + ϕ x y + ϕ y = x 3 + ( ϕ − 1 ) x 2 + ( 1 6 5 ϕ − 3 3 1 ) x + 1 3 5 2 ϕ − 2 4 0 8
36.1-a4
36.1-a
4 4 4
10 10 1 0
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
36.1
2 2 ⋅ 3 2 2^{2} \cdot 3^{2} 2 2 ⋅ 3 2
2 2 ⋅ 3 4 2^{2} \cdot 3^{4} 2 2 ⋅ 3 4
0.48944 0.48944 0 . 4 8 9 4 4
( 2 ) , ( 3 ) (2), (3) ( 2 ) , ( 3 )
0
Z / 10 Z \Z/10\Z Z / 1 0 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 5 2, 5 2 , 5
2B , 5B.1.1[2]
1 1 1
2 2 2
1 1 1
44.29962169 44.29962169 4 4 . 2 9 9 6 2 1 6 9
0.396227861
131872229 18 \frac{131872229}{18} 1 8 1 3 1 8 7 2 2 2 9
[ ϕ \bigl[\phi [ ϕ , ϕ − 1 \phi - 1 ϕ − 1 , ϕ \phi ϕ , 10 ϕ − 21 10 \phi - 21 1 0 ϕ − 2 1 , − 31 ϕ + 51 ] -31 \phi + 51\bigr] − 3 1 ϕ + 5 1 ]
y 2 + ϕ x y + ϕ y = x 3 + ( ϕ − 1 ) x 2 + ( 10 ϕ − 21 ) x − 31 ϕ + 51 {y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(10\phi-21\right){x}-31\phi+51 y 2 + ϕ x y + ϕ y = x 3 + ( ϕ − 1 ) x 2 + ( 1 0 ϕ − 2 1 ) x − 3 1 ϕ + 5 1
41.1-a1
41.1-a
2 2 2
7 7 7
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
41.1
41 41 4 1
41 41 4 1
0.50561 0.50561 0 . 5 0 5 6 1
( a + 6 ) (a+6) ( a + 6 )
0
Z / 7 Z \Z/7\Z Z / 7 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
7 7 7
7B.1.1
1 1 1
1 1 1
1 1 1
46.26087846 46.26087846 4 6 . 2 6 0 8 7 8 4 6
0.422214159
− 176128 41 a − 110592 41 -\frac{176128}{41} a - \frac{110592}{41} − 4 1 1 7 6 1 2 8 a − 4 1 1 1 0 5 9 2
[ 0 \bigl[0 [ 0 , − ϕ -\phi − ϕ , ϕ \phi ϕ , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + ϕ y = x 3 − ϕ x 2 {y}^2+\phi{y}={x}^{3}-\phi{x}^{2} y 2 + ϕ y = x 3 − ϕ x 2
41.1-a2
41.1-a
2 2 2
7 7 7
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
41.1
41 41 4 1
4 1 7 41^{7} 4 1 7
0.50561 0.50561 0 . 5 0 5 6 1
( a + 6 ) (a+6) ( a + 6 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
7 7 7
7B.1.3
1 1 1
1 1 1
1 1 1
0.944099560 0.944099560 0 . 9 4 4 0 9 9 5 6 0
0.422214159
7215644871110656 194754273881 a − 11892928131395584 194754273881 \frac{7215644871110656}{194754273881} a - \frac{11892928131395584}{194754273881} 1 9 4 7 5 4 2 7 3 8 8 1 7 2 1 5 6 4 4 8 7 1 1 1 0 6 5 6 a − 1 9 4 7 5 4 2 7 3 8 8 1 1 1 8 9 2 9 2 8 1 3 1 3 9 5 5 8 4
[ 0 \bigl[0 [ 0 , − ϕ -\phi − ϕ , ϕ \phi ϕ , 10 ϕ − 40 10 \phi - 40 1 0 ϕ − 4 0 , 31 ϕ − 113 ] 31 \phi - 113\bigr] 3 1 ϕ − 1 1 3 ]
y 2 + ϕ y = x 3 − ϕ x 2 + ( 10 ϕ − 40 ) x + 31 ϕ − 113 {y}^2+\phi{y}={x}^{3}-\phi{x}^{2}+\left(10\phi-40\right){x}+31\phi-113 y 2 + ϕ y = x 3 − ϕ x 2 + ( 1 0 ϕ − 4 0 ) x + 3 1 ϕ − 1 1 3
41.2-a1
41.2-a
2 2 2
7 7 7
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
41.2
41 41 4 1
4 1 7 41^{7} 4 1 7
0.50561 0.50561 0 . 5 0 5 6 1
( a − 7 ) (a-7) ( a − 7 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
7 7 7
7B.1.3
1 1 1
1 1 1
1 1 1
0.944099560 0.944099560 0 . 9 4 4 0 9 9 5 6 0
0.422214159
− 7215644871110656 194754273881 a − 4677283260284928 194754273881 -\frac{7215644871110656}{194754273881} a - \frac{4677283260284928}{194754273881} − 1 9 4 7 5 4 2 7 3 8 8 1 7 2 1 5 6 4 4 8 7 1 1 1 0 6 5 6 a − 1 9 4 7 5 4 2 7 3 8 8 1 4 6 7 7 2 8 3 2 6 0 2 8 4 9 2 8
[ 0 \bigl[0 [ 0 , ϕ − 1 \phi - 1 ϕ − 1 , ϕ + 1 \phi + 1 ϕ + 1 , − 10 ϕ − 30 -10 \phi - 30 − 1 0 ϕ − 3 0 , − 32 ϕ − 82 ] -32 \phi - 82\bigr] − 3 2 ϕ − 8 2 ]
y 2 + ( ϕ + 1 ) y = x 3 + ( ϕ − 1 ) x 2 + ( − 10 ϕ − 30 ) x − 32 ϕ − 82 {y}^2+\left(\phi+1\right){y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-10\phi-30\right){x}-32\phi-82 y 2 + ( ϕ + 1 ) y = x 3 + ( ϕ − 1 ) x 2 + ( − 1 0 ϕ − 3 0 ) x − 3 2 ϕ − 8 2
41.2-a2
41.2-a
2 2 2
7 7 7
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
41.2
41 41 4 1
41 41 4 1
0.50561 0.50561 0 . 5 0 5 6 1
( a − 7 ) (a-7) ( a − 7 )
0
Z / 7 Z \Z/7\Z Z / 7 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
7 7 7
7B.1.1
1 1 1
1 1 1
1 1 1
46.26087846 46.26087846 4 6 . 2 6 0 8 7 8 4 6
0.422214159
176128 41 a − 286720 41 \frac{176128}{41} a - \frac{286720}{41} 4 1 1 7 6 1 2 8 a − 4 1 2 8 6 7 2 0
[ 0 \bigl[0 [ 0 , ϕ − 1 \phi - 1 ϕ − 1 , ϕ + 1 \phi + 1 ϕ + 1 , 0 0 0 , − ϕ ] -\phi\bigr] − ϕ ]
y 2 + ( ϕ + 1 ) y = x 3 + ( ϕ − 1 ) x 2 − ϕ {y}^2+\left(\phi+1\right){y}={x}^{3}+\left(\phi-1\right){x}^{2}-\phi y 2 + ( ϕ + 1 ) y = x 3 + ( ϕ − 1 ) x 2 − ϕ
45.1-a1
45.1-a
10 10 1 0
32 32 3 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
45.1
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
− 3 4 ⋅ 5 - 3^{4} \cdot 5 − 3 4 ⋅ 5
0.51752 0.51752 0 . 5 1 7 5 2
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
16 16 1 6
2 2 2
1 1 1
0.122605555 0.122605555 0 . 1 2 2 6 0 5 5 5 5
0.438646969
− 152409672113485069453847362 45 a + 246604029693845863366701161 45 -\frac{152409672113485069453847362}{45} a + \frac{246604029693845863366701161}{45} − 4 5 1 5 2 4 0 9 6 7 2 1 1 3 4 8 5 0 6 9 4 5 3 8 4 7 3 6 2 a + 4 5 2 4 6 6 0 4 0 2 9 6 9 3 8 4 5 8 6 3 3 6 6 7 0 1 1 6 1
[ ϕ \bigl[\phi [ ϕ , ϕ + 1 \phi + 1 ϕ + 1 , 1 1 1 , − 4364 ϕ − 7739 -4364 \phi - 7739 − 4 3 6 4 ϕ − 7 7 3 9 , − 255406 ϕ − 296465 ] -255406 \phi - 296465\bigr] − 2 5 5 4 0 6 ϕ − 2 9 6 4 6 5 ]
y 2 + ϕ x y + y = x 3 + ( ϕ + 1 ) x 2 + ( − 4364 ϕ − 7739 ) x − 255406 ϕ − 296465 {y}^2+\phi{x}{y}+{y}={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-4364\phi-7739\right){x}-255406\phi-296465 y 2 + ϕ x y + y = x 3 + ( ϕ + 1 ) x 2 + ( − 4 3 6 4 ϕ − 7 7 3 9 ) x − 2 5 5 4 0 6 ϕ − 2 9 6 4 6 5
45.1-a2
45.1-a
10 10 1 0
32 32 3 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
45.1
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 32 ⋅ 5 2 3^{32} \cdot 5^{2} 3 3 2 ⋅ 5 2
0.51752 0.51752 0 . 5 1 7 5 2
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2B
1 1 1
2 5 2^{5} 2 5
1 1 1
0.490422220 0.490422220 0 . 4 9 0 4 2 2 2 2 0
0.438646969
− 147281603041 215233605 -\frac{147281603041}{215233605} − 2 1 5 2 3 3 6 0 5 1 4 7 2 8 1 6 0 3 0 4 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 110 -110 − 1 1 0 , − 880 ] -880\bigr] − 8 8 0 ]
y 2 + x y + y = x 3 + x 2 − 110 x − 880 {y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-110{x}-880 y 2 + x y + y = x 3 + x 2 − 1 1 0 x − 8 8 0
45.1-a3
45.1-a
10 10 1 0
32 32 3 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
45.1
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 2 ⋅ 5 2 3^{2} \cdot 5^{2} 3 2 ⋅ 5 2
0.51752 0.51752 0 . 5 1 7 5 2
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
31.38702211 31.38702211 3 1 . 3 8 7 0 2 2 1 1
0.438646969
− 1 15 -\frac{1}{15} − 1 5 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + x y + y = x 3 + x 2 {y}^2+{x}{y}+{y}={x}^{3}+{x}^{2} y 2 + x y + y = x 3 + x 2
45.1-a4
45.1-a
10 10 1 0
32 32 3 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
45.1
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 4 ⋅ 5 16 3^{4} \cdot 5^{16} 3 4 ⋅ 5 1 6
0.51752 0.51752 0 . 5 1 7 5 2
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2B
1 1 1
2 5 2^{5} 2 5
1 1 1
1.961688882 1.961688882 1 . 9 6 1 6 8 8 8 8 2
0.438646969
4733169839 3515625 \frac{4733169839}{3515625} 3 5 1 5 6 2 5 4 7 3 3 1 6 9 8 3 9
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , 35 35 3 5 , − 28 ] -28\bigr] − 2 8 ]
y 2 + x y + y = x 3 + x 2 + 35 x − 28 {y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+35{x}-28 y 2 + x y + y = x 3 + x 2 + 3 5 x − 2 8
45.1-a5
45.1-a
10 10 1 0
32 32 3 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
45.1
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 8 ⋅ 5 8 3^{8} \cdot 5^{8} 3 8 ⋅ 5 8
0.51752 0.51752 0 . 5 1 7 5 2
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z\oplus\Z/8\Z Z / 2 Z ⊕ Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
1 1 1
7.846755528 7.846755528 7 . 8 4 6 7 5 5 5 2 8
0.438646969
111284641 50625 \frac{111284641}{50625} 5 0 6 2 5 1 1 1 2 8 4 6 4 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 10 -10 − 1 0 , − 10 ] -10\bigr] − 1 0 ]
y 2 + x y + y = x 3 + x 2 − 10 x − 10 {y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-10{x}-10 y 2 + x y + y = x 3 + x 2 − 1 0 x − 1 0
45.1-a6
45.1-a
10 10 1 0
32 32 3 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
45.1
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 4 ⋅ 5 4 3^{4} \cdot 5^{4} 3 4 ⋅ 5 4
0.51752 0.51752 0 . 5 1 7 5 2
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z\oplus\Z/8\Z Z / 2 Z ⊕ Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
31.38702211 31.38702211 3 1 . 3 8 7 0 2 2 1 1
0.438646969
13997521 225 \frac{13997521}{225} 2 2 5 1 3 9 9 7 5 2 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 5 -5 − 5 , 2 ] 2\bigr] 2 ]
y 2 + x y + y = x 3 + x 2 − 5 x + 2 {y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-5{x}+2 y 2 + x y + y = x 3 + x 2 − 5 x + 2
45.1-a7
45.1-a
10 10 1 0
32 32 3 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
45.1
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 16 ⋅ 5 4 3^{16} \cdot 5^{4} 3 1 6 ⋅ 5 4
0.51752 0.51752 0 . 5 1 7 5 2
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
1 1 1
1.961688882 1.961688882 1 . 9 6 1 6 8 8 8 8 2
0.438646969
272223782641 164025 \frac{272223782641}{164025} 1 6 4 0 2 5 2 7 2 2 2 3 7 8 2 6 4 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 135 -135 − 1 3 5 , − 660 ] -660\bigr] − 6 6 0 ]
y 2 + x y + y = x 3 + x 2 − 135 x − 660 {y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-135{x}-660 y 2 + x y + y = x 3 + x 2 − 1 3 5 x − 6 6 0
45.1-a8
45.1-a
10 10 1 0
32 32 3 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
45.1
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 2 ⋅ 5 2 3^{2} \cdot 5^{2} 3 2 ⋅ 5 2
0.51752 0.51752 0 . 5 1 7 5 2
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
31.38702211 31.38702211 3 1 . 3 8 7 0 2 2 1 1
0.438646969
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 80 -80 − 8 0 , 242 ] 242\bigr] 2 4 2 ]
y 2 + x y + y = x 3 + x 2 − 80 x + 242 {y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-80{x}+242 y 2 + x y + y = x 3 + x 2 − 8 0 x + 2 4 2
45.1-a9
45.1-a
10 10 1 0
32 32 3 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
45.1
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 8 ⋅ 5 2 3^{8} \cdot 5^{2} 3 8 ⋅ 5 2
0.51752 0.51752 0 . 5 1 7 5 2
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
4 4 4
2 3 2^{3} 2 3
1 1 1
0.490422220 0.490422220 0 . 4 9 0 4 2 2 2 2 0
0.438646969
1114544804970241 405 \frac{1114544804970241}{405} 4 0 5 1 1 1 4 5 4 4 8 0 4 9 7 0 2 4 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 2160 -2160 − 2 1 6 0 , − 39540 ] -39540\bigr] − 3 9 5 4 0 ]
y 2 + x y + y = x 3 + x 2 − 2160 x − 39540 {y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-2160{x}-39540 y 2 + x y + y = x 3 + x 2 − 2 1 6 0 x − 3 9 5 4 0
45.1-a10
45.1-a
10 10 1 0
32 32 3 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
45.1
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
− 3 4 ⋅ 5 - 3^{4} \cdot 5 − 3 4 ⋅ 5
0.51752 0.51752 0 . 5 1 7 5 2
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
16 16 1 6
2 2 2
1 1 1
0.122605555 0.122605555 0 . 1 2 2 6 0 5 5 5 5
0.438646969
152409672113485069453847362 45 a + 94194357580360793912853799 45 \frac{152409672113485069453847362}{45} a + \frac{94194357580360793912853799}{45} 4 5 1 5 2 4 0 9 6 7 2 1 1 3 4 8 5 0 6 9 4 5 3 8 4 7 3 6 2 a + 4 5 9 4 1 9 4 3 5 7 5 8 0 3 6 0 7 9 3 9 1 2 8 5 3 7 9 9
[ ϕ + 1 \bigl[\phi + 1 [ ϕ + 1 , ϕ − 1 \phi - 1 ϕ − 1 , ϕ + 1 \phi + 1 ϕ + 1 , 4364 ϕ − 12105 4364 \phi - 12105 4 3 6 4 ϕ − 1 2 1 0 5 , 243301 ϕ − 535402 ] 243301 \phi - 535402\bigr] 2 4 3 3 0 1 ϕ − 5 3 5 4 0 2 ]
y 2 + ( ϕ + 1 ) x y + ( ϕ + 1 ) y = x 3 + ( ϕ − 1 ) x 2 + ( 4364 ϕ − 12105 ) x + 243301 ϕ − 535402 {y}^2+\left(\phi+1\right){x}{y}+\left(\phi+1\right){y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(4364\phi-12105\right){x}+243301\phi-535402 y 2 + ( ϕ + 1 ) x y + ( ϕ + 1 ) y = x 3 + ( ϕ − 1 ) x 2 + ( 4 3 6 4 ϕ − 1 2 1 0 5 ) x + 2 4 3 3 0 1 ϕ − 5 3 5 4 0 2
49.1-a1
49.1-a
2 2 2
5 5 5
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
49.1
7 2 7^{2} 7 2
7 10 7^{10} 7 1 0
0.52866 0.52866 0 . 5 2 8 6 6
( 7 ) (7) ( 7 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
5 5 5
5B.1.4[2]
1 1 1
1 1 1
1 1 1
1.045448192 1.045448192 1 . 0 4 5 4 4 8 1 9 2
0.467538645
− 2887553024 16807 -\frac{2887553024}{16807} − 1 6 8 0 7 2 8 8 7 5 5 3 0 2 4
[ 0 \bigl[0 [ 0 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 1 1 1 , − 30 ϕ − 29 -30 \phi - 29 − 3 0 ϕ − 2 9 , − 102 ϕ − 84 ] -102 \phi - 84\bigr] − 1 0 2 ϕ − 8 4 ]
y 2 + y = x 3 + ( − ϕ + 1 ) x 2 + ( − 30 ϕ − 29 ) x − 102 ϕ − 84 {y}^2+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-30\phi-29\right){x}-102\phi-84 y 2 + y = x 3 + ( − ϕ + 1 ) x 2 + ( − 3 0 ϕ − 2 9 ) x − 1 0 2 ϕ − 8 4
49.1-a2
49.1-a
2 2 2
5 5 5
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
49.1
7 2 7^{2} 7 2
7 2 7^{2} 7 2
0.52866 0.52866 0 . 5 2 8 6 6
( 7 ) (7) ( 7 )
0
Z / 5 Z \Z/5\Z Z / 5 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
5 5 5
5B.1.1[2]
1 1 1
1 1 1
1 1 1
26.13620482 26.13620482 2 6 . 1 3 6 2 0 4 8 2
0.467538645
4096 7 \frac{4096}{7} 7 4 0 9 6
[ 0 \bigl[0 [ 0 , ϕ \phi ϕ , 1 1 1 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 + y = x 3 + ϕ x 2 + x {y}^2+{y}={x}^{3}+\phi{x}^{2}+{x} y 2 + y = x 3 + ϕ x 2 + x
55.1-a1
55.1-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.1
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
− 5 ⋅ 1 1 4 - 5 \cdot 11^{4} − 5 ⋅ 1 1 4
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 1 ) (-2a+1), (-3a+1) ( − 2 a + 1 ) , ( − 3 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
19.86707574 19.86707574 1 9 . 8 6 7 0 7 5 7 4
0.493601465
− 626283905886387 73205 a + 1013348626965991 73205 -\frac{626283905886387}{73205} a + \frac{1013348626965991}{73205} − 7 3 2 0 5 6 2 6 2 8 3 9 0 5 8 8 6 3 8 7 a + 7 3 2 0 5 1 0 1 3 3 4 8 6 2 6 9 6 5 9 9 1
[ 1 \bigl[1 [ 1 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 1 1 1 , 9 ϕ − 25 9 \phi - 25 9 ϕ − 2 5 , − 6 ϕ + 44 ] -6 \phi + 44\bigr] − 6 ϕ + 4 4 ]
y 2 + x y + y = x 3 + ( − ϕ + 1 ) x 2 + ( 9 ϕ − 25 ) x − 6 ϕ + 44 {y}^2+{x}{y}+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(9\phi-25\right){x}-6\phi+44 y 2 + x y + y = x 3 + ( − ϕ + 1 ) x 2 + ( 9 ϕ − 2 5 ) x − 6 ϕ + 4 4
55.1-a2
55.1-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.1
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
− 5 3 ⋅ 1 1 12 - 5^{3} \cdot 11^{12} − 5 3 ⋅ 1 1 1 2
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 1 ) (-2a+1), (-3a+1) ( − 2 a + 1 ) , ( − 3 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
2.207452860 2.207452860 2 . 2 0 7 4 5 2 8 6 0
0.493601465
− 114278307303626907 78460709418025 a + 203603378036088236 78460709418025 -\frac{114278307303626907}{78460709418025} a + \frac{203603378036088236}{78460709418025} − 7 8 4 6 0 7 0 9 4 1 8 0 2 5 1 1 4 2 7 8 3 0 7 3 0 3 6 2 6 9 0 7 a + 7 8 4 6 0 7 0 9 4 1 8 0 2 5 2 0 3 6 0 3 3 7 8 0 3 6 0 8 8 2 3 6
[ 1 \bigl[1 [ 1 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 1 1 1 , 54 ϕ 54 \phi 5 4 ϕ , − 374 ϕ − 198 ] -374 \phi - 198\bigr] − 3 7 4 ϕ − 1 9 8 ]
y 2 + x y + y = x 3 + ( − ϕ + 1 ) x 2 + 54 ϕ x − 374 ϕ − 198 {y}^2+{x}{y}+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+54\phi{x}-374\phi-198 y 2 + x y + y = x 3 + ( − ϕ + 1 ) x 2 + 5 4 ϕ x − 3 7 4 ϕ − 1 9 8
55.1-a3
55.1-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.1
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
− 5 ⋅ 11 - 5 \cdot 11 − 5 ⋅ 1 1
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 1 ) (-2a+1), (-3a+1) ( − 2 a + 1 ) , ( − 3 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
1 1 1
1 1 1
39.73415148 39.73415148 3 9 . 7 3 4 1 5 1 4 8
0.493601465
45227 55 a + 26979 55 \frac{45227}{55} a + \frac{26979}{55} 5 5 4 5 2 2 7 a + 5 5 2 6 9 7 9
[ ϕ + 1 \bigl[\phi + 1 [ ϕ + 1 , 0 0 0 , ϕ + 1 \phi + 1 ϕ + 1 , − ϕ − 1 -\phi - 1 − ϕ − 1 , − ϕ ] -\phi\bigr] − ϕ ]
y 2 + ( ϕ + 1 ) x y + ( ϕ + 1 ) y = x 3 + ( − ϕ − 1 ) x − ϕ {y}^2+\left(\phi+1\right){x}{y}+\left(\phi+1\right){y}={x}^{3}+\left(-\phi-1\right){x}-\phi y 2 + ( ϕ + 1 ) x y + ( ϕ + 1 ) y = x 3 + ( − ϕ − 1 ) x − ϕ
55.1-a4
55.1-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.1
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
5 6 ⋅ 1 1 6 5^{6} \cdot 11^{6} 5 6 ⋅ 1 1 6
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 1 ) (-2a+1), (-3a+1) ( − 2 a + 1 ) , ( − 3 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
4.414905721 4.414905721 4 . 4 1 4 9 0 5 7 2 1
0.493601465
− 1485675267531 221445125 a + 4152064659709 221445125 -\frac{1485675267531}{221445125} a + \frac{4152064659709}{221445125} − 2 2 1 4 4 5 1 2 5 1 4 8 5 6 7 5 2 6 7 5 3 1 a + 2 2 1 4 4 5 1 2 5 4 1 5 2 0 6 4 6 5 9 7 0 9
[ 1 \bigl[1 [ 1 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 1 1 1 , − 21 ϕ − 25 -21 \phi - 25 − 2 1 ϕ − 2 5 , − 54 ϕ − 58 ] -54 \phi - 58\bigr] − 5 4 ϕ − 5 8 ]
y 2 + x y + y = x 3 + ( − ϕ + 1 ) x 2 + ( − 21 ϕ − 25 ) x − 54 ϕ − 58 {y}^2+{x}{y}+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-21\phi-25\right){x}-54\phi-58 y 2 + x y + y = x 3 + ( − ϕ + 1 ) x 2 + ( − 2 1 ϕ − 2 5 ) x − 5 4 ϕ − 5 8
55.1-a5
55.1-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.1
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
5 12 ⋅ 1 1 3 5^{12} \cdot 11^{3} 5 1 2 ⋅ 1 1 3
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 1 ) (-2a+1), (-3a+1) ( − 2 a + 1 ) , ( − 3 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
2.207452860 2.207452860 2 . 2 0 7 4 5 2 8 6 0
0.493601465
− 4560282420936767 20796875 a + 7378860561741612 20796875 -\frac{4560282420936767}{20796875} a + \frac{7378860561741612}{20796875} − 2 0 7 9 6 8 7 5 4 5 6 0 2 8 2 4 2 0 9 3 6 7 6 7 a + 2 0 7 9 6 8 7 5 7 3 7 8 8 6 0 5 6 1 7 4 1 6 1 2
[ 1 \bigl[1 [ 1 , − ϕ + 1 -\phi + 1 − ϕ + 1 , 1 1 1 , − 16 ϕ − 210 -16 \phi - 210 − 1 6 ϕ − 2 1 0 , 1110 ϕ − 534 ] 1110 \phi - 534\bigr] 1 1 1 0 ϕ − 5 3 4 ]
y 2 + x y + y = x 3 + ( − ϕ + 1 ) x 2 + ( − 16 ϕ − 210 ) x + 1110 ϕ − 534 {y}^2+{x}{y}+{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-16\phi-210\right){x}+1110\phi-534 y 2 + x y + y = x 3 + ( − ϕ + 1 ) x 2 + ( − 1 6 ϕ − 2 1 0 ) x + 1 1 1 0 ϕ − 5 3 4
55.1-a6
55.1-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.1
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
5 2 ⋅ 1 1 2 5^{2} \cdot 11^{2} 5 2 ⋅ 1 1 2
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 1 ) (-2a+1), (-3a+1) ( − 2 a + 1 ) , ( − 3 a + 1 )
0
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z\oplus\Z/6\Z Z / 2 Z ⊕ Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.1
1 1 1
2 2 2^{2} 2 2
1 1 1
39.73415148 39.73415148 3 9 . 7 3 4 1 5 1 4 8
0.493601465
132583563 605 a + 166070482 605 \frac{132583563}{605} a + \frac{166070482}{605} 6 0 5 1 3 2 5 8 3 5 6 3 a + 6 0 5 1 6 6 0 7 0 4 8 2
[ ϕ + 1 \bigl[\phi + 1 [ ϕ + 1 , 0 0 0 , ϕ + 1 \phi + 1 ϕ + 1 , 4 ϕ − 11 4 \phi - 11 4 ϕ − 1 1 , − 9 ϕ + 13 ] -9 \phi + 13\bigr] − 9 ϕ + 1 3 ]
y 2 + ( ϕ + 1 ) x y + ( ϕ + 1 ) y = x 3 + ( 4 ϕ − 11 ) x − 9 ϕ + 13 {y}^2+\left(\phi+1\right){x}{y}+\left(\phi+1\right){y}={x}^{3}+\left(4\phi-11\right){x}-9\phi+13 y 2 + ( ϕ + 1 ) x y + ( ϕ + 1 ) y = x 3 + ( 4 ϕ − 1 1 ) x − 9 ϕ + 1 3
55.1-a7
55.1-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.1
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
− 5 3 ⋅ 1 1 3 - 5^{3} \cdot 11^{3} − 5 3 ⋅ 1 1 3
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 1 ) (-2a+1), (-3a+1) ( − 2 a + 1 ) , ( − 3 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
1 1 1
1 1 1
4.414905721 4.414905721 4 . 4 1 4 9 0 5 7 2 1
0.493601465
754904381777 33275 a + 466557150454 33275 \frac{754904381777}{33275} a + \frac{466557150454}{33275} 3 3 2 7 5 7 5 4 9 0 4 3 8 1 7 7 7 a + 3 3 2 7 5 4 6 6 5 5 7 1 5 0 4 5 4
[ ϕ + 1 \bigl[\phi + 1 [ ϕ + 1 , 0 0 0 , ϕ + 1 \phi + 1 ϕ + 1 , − 6 ϕ − 1 -6 \phi - 1 − 6 ϕ − 1 , ϕ − 17 ] \phi - 17\bigr] ϕ − 1 7 ]
y 2 + ( ϕ + 1 ) x y + ( ϕ + 1 ) y = x 3 + ( − 6 ϕ − 1 ) x + ϕ − 17 {y}^2+\left(\phi+1\right){x}{y}+\left(\phi+1\right){y}={x}^{3}+\left(-6\phi-1\right){x}+\phi-17 y 2 + ( ϕ + 1 ) x y + ( ϕ + 1 ) y = x 3 + ( − 6 ϕ − 1 ) x + ϕ − 1 7
55.1-a8
55.1-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.1
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
5 4 ⋅ 11 5^{4} \cdot 11 5 4 ⋅ 1 1
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 1 ) (-2a+1), (-3a+1) ( − 2 a + 1 ) , ( − 3 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
19.86707574 19.86707574 1 9 . 8 6 7 0 7 5 7 4
0.493601465
48555143354501 275 a + 30008729421823 275 \frac{48555143354501}{275} a + \frac{30008729421823}{275} 2 7 5 4 8 5 5 5 1 4 3 3 5 4 5 0 1 a + 2 7 5 3 0 0 0 8 7 2 9 4 2 1 8 2 3
[ ϕ + 1 \bigl[\phi + 1 [ ϕ + 1 , 0 0 0 , ϕ + 1 \phi + 1 ϕ + 1 , − 6 ϕ − 26 -6 \phi - 26 − 6 ϕ − 2 6 , 28 ϕ + 8 ] 28 \phi + 8\bigr] 2 8 ϕ + 8 ]
y 2 + ( ϕ + 1 ) x y + ( ϕ + 1 ) y = x 3 + ( − 6 ϕ − 26 ) x + 28 ϕ + 8 {y}^2+\left(\phi+1\right){x}{y}+\left(\phi+1\right){y}={x}^{3}+\left(-6\phi-26\right){x}+28\phi+8 y 2 + ( ϕ + 1 ) x y + ( ϕ + 1 ) y = x 3 + ( − 6 ϕ − 2 6 ) x + 2 8 ϕ + 8
55.2-a1
55.2-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.2
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
− 5 ⋅ 11 - 5 \cdot 11 − 5 ⋅ 1 1
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 2 ) (-2a+1), (-3a+2) ( − 2 a + 1 ) , ( − 3 a + 2 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
1 1 1
1 1 1
39.73415148 39.73415148 3 9 . 7 3 4 1 5 1 4 8
0.493601465
− 45227 55 a + 72206 55 -\frac{45227}{55} a + \frac{72206}{55} − 5 5 4 5 2 2 7 a + 5 5 7 2 2 0 6
[ ϕ \bigl[\phi [ ϕ , − ϕ + 1 -\phi + 1 − ϕ + 1 , ϕ \phi ϕ , − ϕ -\phi − ϕ , 0 ] 0\bigr] 0 ]
y 2 + ϕ x y + ϕ y = x 3 + ( − ϕ + 1 ) x 2 − ϕ x {y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(-\phi+1\right){x}^{2}-\phi{x} y 2 + ϕ x y + ϕ y = x 3 + ( − ϕ + 1 ) x 2 − ϕ x
55.2-a2
55.2-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.2
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
− 5 3 ⋅ 1 1 3 - 5^{3} \cdot 11^{3} − 5 3 ⋅ 1 1 3
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 2 ) (-2a+1), (-3a+2) ( − 2 a + 1 ) , ( − 3 a + 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
1 1 1
1 1 1
4.414905721 4.414905721 4 . 4 1 4 9 0 5 7 2 1
0.493601465
− 754904381777 33275 a + 1221461532231 33275 -\frac{754904381777}{33275} a + \frac{1221461532231}{33275} − 3 3 2 7 5 7 5 4 9 0 4 3 8 1 7 7 7 a + 3 3 2 7 5 1 2 2 1 4 6 1 5 3 2 2 3 1
[ ϕ \bigl[\phi [ ϕ , − ϕ + 1 -\phi + 1 − ϕ + 1 , ϕ \phi ϕ , 4 ϕ − 5 4 \phi - 5 4 ϕ − 5 , − 2 ϕ − 15 ] -2 \phi - 15\bigr] − 2 ϕ − 1 5 ]
y 2 + ϕ x y + ϕ y = x 3 + ( − ϕ + 1 ) x 2 + ( 4 ϕ − 5 ) x − 2 ϕ − 15 {y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(4\phi-5\right){x}-2\phi-15 y 2 + ϕ x y + ϕ y = x 3 + ( − ϕ + 1 ) x 2 + ( 4 ϕ − 5 ) x − 2 ϕ − 1 5
55.2-a3
55.2-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.2
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
5 4 ⋅ 11 5^{4} \cdot 11 5 4 ⋅ 1 1
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 2 ) (-2a+1), (-3a+2) ( − 2 a + 1 ) , ( − 3 a + 2 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
19.86707574 19.86707574 1 9 . 8 6 7 0 7 5 7 4
0.493601465
− 48555143354501 275 a + 78563872776324 275 -\frac{48555143354501}{275} a + \frac{78563872776324}{275} − 2 7 5 4 8 5 5 5 1 4 3 3 5 4 5 0 1 a + 2 7 5 7 8 5 6 3 8 7 2 7 7 6 3 2 4
[ ϕ \bigl[\phi [ ϕ , − ϕ + 1 -\phi + 1 − ϕ + 1 , ϕ \phi ϕ , 4 ϕ − 30 4 \phi - 30 4 ϕ − 3 0 , − 29 ϕ + 37 ] -29 \phi + 37\bigr] − 2 9 ϕ + 3 7 ]
y 2 + ϕ x y + ϕ y = x 3 + ( − ϕ + 1 ) x 2 + ( 4 ϕ − 30 ) x − 29 ϕ + 37 {y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(4\phi-30\right){x}-29\phi+37 y 2 + ϕ x y + ϕ y = x 3 + ( − ϕ + 1 ) x 2 + ( 4 ϕ − 3 0 ) x − 2 9 ϕ + 3 7
55.2-a4
55.2-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.2
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
− 5 3 ⋅ 1 1 12 - 5^{3} \cdot 11^{12} − 5 3 ⋅ 1 1 1 2
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 2 ) (-2a+1), (-3a+2) ( − 2 a + 1 ) , ( − 3 a + 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
2.207452860 2.207452860 2 . 2 0 7 4 5 2 8 6 0
0.493601465
114278307303626907 78460709418025 a + 89325070732461329 78460709418025 \frac{114278307303626907}{78460709418025} a + \frac{89325070732461329}{78460709418025} 7 8 4 6 0 7 0 9 4 1 8 0 2 5 1 1 4 2 7 8 3 0 7 3 0 3 6 2 6 9 0 7 a + 7 8 4 6 0 7 0 9 4 1 8 0 2 5 8 9 3 2 5 0 7 0 7 3 2 4 6 1 3 2 9
[ 1 \bigl[1 [ 1 , ϕ \phi ϕ , 1 1 1 , − 54 ϕ + 54 -54 \phi + 54 − 5 4 ϕ + 5 4 , 374 ϕ − 572 ] 374 \phi - 572\bigr] 3 7 4 ϕ − 5 7 2 ]
y 2 + x y + y = x 3 + ϕ x 2 + ( − 54 ϕ + 54 ) x + 374 ϕ − 572 {y}^2+{x}{y}+{y}={x}^{3}+\phi{x}^{2}+\left(-54\phi+54\right){x}+374\phi-572 y 2 + x y + y = x 3 + ϕ x 2 + ( − 5 4 ϕ + 5 4 ) x + 3 7 4 ϕ − 5 7 2
55.2-a5
55.2-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.2
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
5 6 ⋅ 1 1 6 5^{6} \cdot 11^{6} 5 6 ⋅ 1 1 6
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 2 ) (-2a+1), (-3a+2) ( − 2 a + 1 ) , ( − 3 a + 2 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
4.414905721 4.414905721 4 . 4 1 4 9 0 5 7 2 1
0.493601465
1485675267531 221445125 a + 2666389392178 221445125 \frac{1485675267531}{221445125} a + \frac{2666389392178}{221445125} 2 2 1 4 4 5 1 2 5 1 4 8 5 6 7 5 2 6 7 5 3 1 a + 2 2 1 4 4 5 1 2 5 2 6 6 6 3 8 9 3 9 2 1 7 8
[ 1 \bigl[1 [ 1 , ϕ \phi ϕ , 1 1 1 , 21 ϕ − 46 21 \phi - 46 2 1 ϕ − 4 6 , 54 ϕ − 112 ] 54 \phi - 112\bigr] 5 4 ϕ − 1 1 2 ]
y 2 + x y + y = x 3 + ϕ x 2 + ( 21 ϕ − 46 ) x + 54 ϕ − 112 {y}^2+{x}{y}+{y}={x}^{3}+\phi{x}^{2}+\left(21\phi-46\right){x}+54\phi-112 y 2 + x y + y = x 3 + ϕ x 2 + ( 2 1 ϕ − 4 6 ) x + 5 4 ϕ − 1 1 2
55.2-a6
55.2-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.2
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
5 2 ⋅ 1 1 2 5^{2} \cdot 11^{2} 5 2 ⋅ 1 1 2
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 2 ) (-2a+1), (-3a+2) ( − 2 a + 1 ) , ( − 3 a + 2 )
0
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z\oplus\Z/6\Z Z / 2 Z ⊕ Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.1
1 1 1
2 2 2^{2} 2 2
1 1 1
39.73415148 39.73415148 3 9 . 7 3 4 1 5 1 4 8
0.493601465
− 132583563 605 a + 59730809 121 -\frac{132583563}{605} a + \frac{59730809}{121} − 6 0 5 1 3 2 5 8 3 5 6 3 a + 1 2 1 5 9 7 3 0 8 0 9
[ ϕ \bigl[\phi [ ϕ , − ϕ + 1 -\phi + 1 − ϕ + 1 , ϕ \phi ϕ , − 6 ϕ − 5 -6 \phi - 5 − 6 ϕ − 5 , 8 ϕ + 5 ] 8 \phi + 5\bigr] 8 ϕ + 5 ]
y 2 + ϕ x y + ϕ y = x 3 + ( − ϕ + 1 ) x 2 + ( − 6 ϕ − 5 ) x + 8 ϕ + 5 {y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-6\phi-5\right){x}+8\phi+5 y 2 + ϕ x y + ϕ y = x 3 + ( − ϕ + 1 ) x 2 + ( − 6 ϕ − 5 ) x + 8 ϕ + 5
55.2-a7
55.2-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.2
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
5 12 ⋅ 1 1 3 5^{12} \cdot 11^{3} 5 1 2 ⋅ 1 1 3
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 2 ) (-2a+1), (-3a+2) ( − 2 a + 1 ) , ( − 3 a + 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
2.207452860 2.207452860 2 . 2 0 7 4 5 2 8 6 0
0.493601465
4560282420936767 20796875 a + 563715628160969 4159375 \frac{4560282420936767}{20796875} a + \frac{563715628160969}{4159375} 2 0 7 9 6 8 7 5 4 5 6 0 2 8 2 4 2 0 9 3 6 7 6 7 a + 4 1 5 9 3 7 5 5 6 3 7 1 5 6 2 8 1 6 0 9 6 9
[ 1 \bigl[1 [ 1 , ϕ \phi ϕ , 1 1 1 , 16 ϕ − 226 16 \phi - 226 1 6 ϕ − 2 2 6 , − 1110 ϕ + 576 ] -1110 \phi + 576\bigr] − 1 1 1 0 ϕ + 5 7 6 ]
y 2 + x y + y = x 3 + ϕ x 2 + ( 16 ϕ − 226 ) x − 1110 ϕ + 576 {y}^2+{x}{y}+{y}={x}^{3}+\phi{x}^{2}+\left(16\phi-226\right){x}-1110\phi+576 y 2 + x y + y = x 3 + ϕ x 2 + ( 1 6 ϕ − 2 2 6 ) x − 1 1 1 0 ϕ + 5 7 6
55.2-a8
55.2-a
8 8 8
12 12 1 2
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
55.2
5 ⋅ 11 5 \cdot 11 5 ⋅ 1 1
− 5 ⋅ 1 1 4 - 5 \cdot 11^{4} − 5 ⋅ 1 1 4
0.54414 0.54414 0 . 5 4 4 1 4
( − 2 a + 1 ) , ( − 3 a + 2 ) (-2a+1), (-3a+2) ( − 2 a + 1 ) , ( − 3 a + 2 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
19.86707574 19.86707574 1 9 . 8 6 7 0 7 5 7 4
0.493601465
626283905886387 73205 a + 387064721079604 73205 \frac{626283905886387}{73205} a + \frac{387064721079604}{73205} 7 3 2 0 5 6 2 6 2 8 3 9 0 5 8 8 6 3 8 7 a + 7 3 2 0 5 3 8 7 0 6 4 7 2 1 0 7 9 6 0 4
[ 1 \bigl[1 [ 1 , ϕ \phi ϕ , 1 1 1 , − 9 ϕ − 16 -9 \phi - 16 − 9 ϕ − 1 6 , 6 ϕ + 38 ] 6 \phi + 38\bigr] 6 ϕ + 3 8 ]
y 2 + x y + y = x 3 + ϕ x 2 + ( − 9 ϕ − 16 ) x + 6 ϕ + 38 {y}^2+{x}{y}+{y}={x}^{3}+\phi{x}^{2}+\left(-9\phi-16\right){x}+6\phi+38 y 2 + x y + y = x 3 + ϕ x 2 + ( − 9 ϕ − 1 6 ) x + 6 ϕ + 3 8
64.1-a1
64.1-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
64.1
2 6 2^{6} 2 6
− 2 20 - 2^{20} − 2 2 0
0.56516 0.56516 0 . 5 6 5 1 6
( 2 ) (2) ( 2 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
2.397417474 2.397417474 2 . 3 9 7 4 1 7 4 7 4
0.536078844
− 2711191688 a + 4386800300 -2711191688 a + 4386800300 − 2 7 1 1 1 9 1 6 8 8 a + 4 3 8 6 8 0 0 3 0 0
[ 0 \bigl[0 [ 0 , ϕ − 1 \phi - 1 ϕ − 1 , 0 0 0 , 14 ϕ − 25 14 \phi - 25 1 4 ϕ − 2 5 , ϕ − 59 ] \phi - 59\bigr] ϕ − 5 9 ]
y 2 = x 3 + ( ϕ − 1 ) x 2 + ( 14 ϕ − 25 ) x + ϕ − 59 {y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(14\phi-25\right){x}+\phi-59 y 2 = x 3 + ( ϕ − 1 ) x 2 + ( 1 4 ϕ − 2 5 ) x + ϕ − 5 9
64.1-a2
64.1-a
6 6 6
8 8 8
Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
2 2 2
[ 2 , 0 ] [2, 0] [ 2 , 0 ]
64.1
2 6 2^{6} 2 6
− 2 16 - 2^{16} − 2 1 6
0.56516 0.56516 0 . 5 6 5 1 6
( 2 ) (2) ( 2 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
19.17933979 19.17933979 1 9 . 1 7 9 3 3 9 7 9
0.536078844
− 548896 a + 889584 -548896 a + 889584 − 5 4 8 8 9 6 a + 8 8 9 5 8 4
[ 0 \bigl[0 [ 0 , ϕ − 1 \phi - 1 ϕ − 1 , 0 0 0 , 4 ϕ 4 \phi 4 ϕ , 4 ] 4\bigr] 4 ]
y 2 = x 3 + ( ϕ − 1 ) x 2 + 4 ϕ x + 4 {y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+4\phi{x}+4 y 2 = x 3 + ( ϕ − 1 ) x 2 + 4 ϕ x + 4