Base field \(\Q(\sqrt{5}) \)
Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -1, 1]))
gp: K = nfinit(Polrev([-1, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,1]),K([1,-1]),K([0,1]),K([-5,4]),K([-15,-2])])
gp: E = ellinit([Polrev([0,1]),Polrev([1,-1]),Polrev([0,1]),Polrev([-5,4]),Polrev([-15,-2])], K);
magma: E := EllipticCurve([K![0,1],K![1,-1],K![0,1],K![-5,4],K![-15,-2]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-\phi+8)\) | = | \((-2\phi+1)\cdot(-3\phi+2)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 55 \) | = | \(5\cdot11\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-365\phi+170)\) | = | \((-2\phi+1)^{3}\cdot(-3\phi+2)^{3}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( -166375 \) | = | \(-5^{3}\cdot11^{3}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{754904381777}{33275} \phi + \frac{1221461532231}{33275} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(2 \phi - 1 : -\phi - 1 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 4.4149057211062937499977131239556998443 \) | ||
Tamagawa product: | \( 1 \) = \(1\cdot1\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 0.49360146533232004287759843238578959492 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-2\phi+1)\) | \(5\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
\((-3\phi+2)\) | \(11\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B.1.2 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3, 4, 6 and 12.
Its isogeny class
55.2-a
consists of curves linked by isogenies of
degrees dividing 12.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.