Base field \(\Q(\sqrt{5}) \)
Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<phi> := NumberField(R![-1, -1, 1]);
sage: x = polygen(QQ); K.<phi> = NumberField(x^2 - x - 1)
gp (2.8): K = nfinit(phi^2 - phi - 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([phi + 1, phi, phi, -5*phi - 5, -51*phi - 37]),K);
sage: E = EllipticCurve(K, [phi + 1, phi, phi, -5*phi - 5, -51*phi - 37])
gp (2.8): E = ellinit([phi + 1, phi, phi, -5*phi - 5, -51*phi - 37],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
\(\mathfrak{N} \) | = | \((6)\) | = | \( \left(2\right) \cdot \left(3\right) \) |
magma: Conductor(E);
sage: E.conductor()
| ||||
\(N(\mathfrak{N}) \) | = | \( 36 \) | = | \( 4 \cdot 9 \) |
magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
\(\mathfrak{D}\) | = | \((248832)\) | = | \( \left(2\right)^{10} \cdot \left(3\right)^{5} \) |
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
\(N(\mathfrak{D})\) | = | \( 61917364224 \) | = | \( 4^{10} \cdot 9^{5} \) |
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
\(j\) | = | \( -\frac{19465109}{248832} \) | ||
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
\( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
\( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: \( 0 \)magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: 1
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
Structure: | \(\Z/2\Z\) |
---|---|
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
Generator: | $\left(\phi + 3 : -3 \phi - 2 : 1\right)$ |
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
|
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\( \left(2\right) \) | \(4\) | \(2\) | \(I_{10}\) | Non-split multiplicative | \(1\) | \(1\) | \(10\) | \(10\) |
\( \left(3\right) \) | \(9\) | \(1\) | \(I_{5}\) | Non-split multiplicative | \(1\) | \(1\) | \(5\) | \(5\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(5\) | 5B.1.4[2] |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 5 and 10.
Its isogeny class
36.1-a
consists of curves linked by isogenies of
degrees dividing 10.