Base field \(\Q(\sqrt{5}) \)
Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).
Elliptic curves in class 2025.1-d over \(\Q(\sqrt{5}) \)
Isogeny class 2025.1-d contains 6 curves linked by isogenies of degrees dividing 75.
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rrrrrr} 1 & 75 & 25 & 3 & 15 & 5 \\ 75 & 1 & 3 & 25 & 5 & 15 \\ 25 & 3 & 1 & 75 & 15 & 5 \\ 3 & 25 & 75 & 1 & 5 & 15 \\ 15 & 5 & 15 & 5 & 1 & 3 \\ 5 & 15 & 5 & 15 & 3 & 1 \end{array}\right)\)