Elliptic curves in class 150.1-b over \(\Q(\sqrt{6}) \)
Isogeny class 150.1-b contains
12 curves linked by isogenies of
degrees dividing 24.
Curve label |
Weierstrass Coefficients |
150.1-b1
| \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -5606 a - 13776\) , \( -395577 a - 969132\bigr] \)
|
150.1-b2
| \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 271 a - 661\) , \( -12352 a + 30257\bigr] \)
|
150.1-b3
| \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -29 a + 74\) , \( 416 a - 1018\bigr] \)
|
150.1-b4
| \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 35919 a + 87939\) , \( 803878 a + 1968921\bigr] \)
|
150.1-b5
| \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -9071 a - 22221\) , \( 98592 a + 241497\bigr] \)
|
150.1-b6
| \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 1371 a - 3356\) , \( -36992 a + 90612\bigr] \)
|
150.1-b7
| \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -371 a - 906\) , \( -5568 a - 13638\bigr] \)
|
150.1-b8
| \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -35919 a + 87939\) , \( -803878 a + 1968921\bigr] \)
|
150.1-b9
| \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -6671 a - 16341\) , \( 462144 a + 1132017\bigr] \)
|
150.1-b10
| \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -5771 a - 14136\) , \( -374496 a - 917328\bigr] \)
|
150.1-b11
| \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -106671 a - 261341\) , \( 29666144 a + 72667017\bigr] \)
|
150.1-b12
| \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 5606 a - 13776\) , \( 395577 a - 969132\bigr] \)
|
Rank: \( 0 \)
\(\left(\begin{array}{rrrrrrrrrrrr}
1 & 24 & 8 & 3 & 6 & 8 & 4 & 12 & 12 & 2 & 24 & 4 \\
24 & 1 & 3 & 8 & 4 & 12 & 6 & 8 & 2 & 12 & 4 & 24 \\
8 & 3 & 1 & 24 & 12 & 4 & 2 & 24 & 6 & 4 & 12 & 8 \\
3 & 8 & 24 & 1 & 2 & 24 & 12 & 4 & 4 & 6 & 8 & 12 \\
6 & 4 & 12 & 2 & 1 & 12 & 6 & 2 & 2 & 3 & 4 & 6 \\
8 & 12 & 4 & 24 & 12 & 1 & 2 & 24 & 6 & 4 & 3 & 8 \\
4 & 6 & 2 & 12 & 6 & 2 & 1 & 12 & 3 & 2 & 6 & 4 \\
12 & 8 & 24 & 4 & 2 & 24 & 12 & 1 & 4 & 6 & 8 & 3 \\
12 & 2 & 6 & 4 & 2 & 6 & 3 & 4 & 1 & 6 & 2 & 12 \\
2 & 12 & 4 & 6 & 3 & 4 & 2 & 6 & 6 & 1 & 12 & 2 \\
24 & 4 & 12 & 8 & 4 & 3 & 6 & 8 & 2 & 12 & 1 & 24 \\
4 & 24 & 8 & 12 & 6 & 8 & 4 & 3 & 12 & 2 & 24 & 1
\end{array}\right)\)