Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
150.1-a1 |
150.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{5} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$6.529028794$ |
1.999098632 |
\( -\frac{112972667}{30000} a + \frac{282187521}{40000} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -5 a - 13\) , \( -15 a - 37\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-5a-13\right){x}-15a-37$ |
150.1-a2 |
150.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{3} \cdot 3 \cdot 5^{17} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \cdot 3 \) |
$1$ |
$1.632257198$ |
1.999098632 |
\( -\frac{4778868950563904371}{1831054687500} a + \frac{1952082876040517781}{305175781250} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -75 a - 273\) , \( -519 a - 1641\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-75a-273\right){x}-519a-1641$ |
150.1-a3 |
150.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{10} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$3.264514397$ |
1.999098632 |
\( \frac{2583922302027}{1562500} a + \frac{38016780418783}{9375000} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -85 a - 213\) , \( -711 a - 1749\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-85a-213\right){x}-711a-1749$ |
150.1-a4 |
150.1-a |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{8} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$0.816128599$ |
1.999098632 |
\( \frac{33523849577935233}{2500} a + \frac{369523465565516147}{11250} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -1375 a - 3353\) , \( -43847 a - 107425\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-1375a-3353\right){x}-43847a-107425$ |
150.1-b1 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{10} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$4$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$0.335468070$ |
3.286902394 |
\( -\frac{8889588234944170142939}{7031250} a + \frac{1209719733278025672168}{390625} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -5606 a - 13776\) , \( -395577 a - 969132\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-5606a-13776\right){x}-395577a-969132$ |
150.1-b2 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{2} \cdot 5^{6} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/12\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{4} \cdot 3^{3} \) |
$1$ |
$5.367489134$ |
3.286902394 |
\( -\frac{273359449}{1536000} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 271 a - 661\) , \( -12352 a + 30257\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(271a-661\right){x}-12352a+30257$ |
150.1-b3 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$5.367489134$ |
3.286902394 |
\( \frac{357911}{2160} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -29 a + 74\) , \( 416 a - 1018\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-29a+74\right){x}+416a-1018$ |
150.1-b4 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{30} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$4$ |
\( 2^{4} \cdot 3^{3} \) |
$1$ |
$0.335468070$ |
3.286902394 |
\( -\frac{26673883482189453500771}{715255737304687500} a + \frac{5545867307448315927528}{59604644775390625} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 35919 a + 87939\) , \( 803878 a + 1968921\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(35919a+87939\right){x}+803878a+1968921$ |
150.1-b5 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{24} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.1 |
$1$ |
\( 2^{6} \cdot 3^{3} \) |
$1$ |
$1.341872283$ |
3.286902394 |
\( \frac{10316097499609}{5859375000} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -9071 a - 22221\) , \( 98592 a + 241497\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-9071a-22221\right){x}+98592a+241497$ |
150.1-b6 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{24} \cdot 5^{2} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$5.367489134$ |
3.286902394 |
\( \frac{35578826569}{5314410} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 1371 a - 3356\) , \( -36992 a + 90612\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(1371a-3356\right){x}-36992a+90612$ |
150.1-b7 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 5^{4} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.2 |
$1$ |
\( 2^{6} \cdot 3 \) |
$1$ |
$5.367489134$ |
3.286902394 |
\( \frac{702595369}{72900} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -371 a - 906\) , \( -5568 a - 13638\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-371a-906\right){x}-5568a-13638$ |
150.1-b8 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{30} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$4$ |
\( 2^{4} \cdot 3^{3} \) |
$1$ |
$0.335468070$ |
3.286902394 |
\( \frac{26673883482189453500771}{715255737304687500} a + \frac{5545867307448315927528}{59604644775390625} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -35919 a + 87939\) , \( -803878 a + 1968921\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-35919a+87939\right){x}-803878a+1968921$ |
150.1-b9 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{12} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/12\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.1 |
$1$ |
\( 2^{6} \cdot 3^{3} \) |
$1$ |
$5.367489134$ |
3.286902394 |
\( \frac{4102915888729}{9000000} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -6671 a - 16341\) , \( 462144 a + 1132017\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-6671a-16341\right){x}+462144a+1132017$ |
150.1-b10 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{8} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.2 |
$1$ |
\( 2^{6} \cdot 3 \) |
$1$ |
$1.341872283$ |
3.286902394 |
\( \frac{2656166199049}{33750} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -5771 a - 14136\) , \( -374496 a - 917328\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-5771a-14136\right){x}-374496a-917328$ |
150.1-b11 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{8} \cdot 5^{6} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/12\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{4} \cdot 3^{3} \) |
$1$ |
$5.367489134$ |
3.286902394 |
\( \frac{16778985534208729}{81000} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -106671 a - 261341\) , \( 29666144 a + 72667017\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-106671a-261341\right){x}+29666144a+72667017$ |
150.1-b12 |
150.1-b |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{10} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$4$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$0.335468070$ |
3.286902394 |
\( \frac{8889588234944170142939}{7031250} a + \frac{1209719733278025672168}{390625} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 5606 a - 13776\) , \( 395577 a - 969132\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(5606a-13776\right){x}+395577a-969132$ |
150.1-c1 |
150.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{8} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$0.816128599$ |
1.999098632 |
\( -\frac{33523849577935233}{2500} a + \frac{369523465565516147}{11250} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( 1374 a - 3353\) , \( 43846 a - 107425\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(1374a-3353\right){x}+43846a-107425$ |
150.1-c2 |
150.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{10} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$3.264514397$ |
1.999098632 |
\( -\frac{2583922302027}{1562500} a + \frac{38016780418783}{9375000} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( 84 a - 213\) , \( 710 a - 1749\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(84a-213\right){x}+710a-1749$ |
150.1-c3 |
150.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{5} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$6.529028794$ |
1.999098632 |
\( \frac{112972667}{30000} a + \frac{282187521}{40000} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( 4 a - 13\) , \( 14 a - 37\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(4a-13\right){x}+14a-37$ |
150.1-c4 |
150.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{3} \cdot 3 \cdot 5^{17} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \cdot 3 \) |
$1$ |
$1.632257198$ |
1.999098632 |
\( \frac{4778868950563904371}{1831054687500} a + \frac{1952082876040517781}{305175781250} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( 74 a - 273\) , \( 518 a - 1641\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(74a-273\right){x}+518a-1641$ |
150.1-d1 |
150.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{8} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.179106595$ |
$5.381534970$ |
1.573990516 |
\( -\frac{33523849577935233}{2500} a + \frac{369523465565516147}{11250} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 291 a + 645\) , \( 5778 a + 14337\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(291a+645\right){x}+5778a+14337$ |
150.1-d2 |
150.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{10} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.089553297$ |
$10.76306994$ |
1.573990516 |
\( -\frac{2583922302027}{1562500} a + \frac{38016780418783}{9375000} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -119 a - 295\) , \( 720 a + 1765\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-119a-295\right){x}+720a+1765$ |
150.1-d3 |
150.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{5} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.179106595$ |
$10.76306994$ |
1.573990516 |
\( \frac{112972667}{30000} a + \frac{282187521}{40000} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -39 a - 95\) , \( -256 a - 627\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-39a-95\right){x}-256a-627$ |
150.1-d4 |
150.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{3} \cdot 3 \cdot 5^{17} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.179106595$ |
$5.381534970$ |
1.573990516 |
\( \frac{4778868950563904371}{1831054687500} a + \frac{1952082876040517781}{305175781250} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -1809 a - 4435\) , \( 63246 a + 154921\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-1809a-4435\right){x}+63246a+154921$ |
150.1-e1 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{10} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3 \) |
$2.508372848$ |
$5.617778566$ |
1.917607978 |
\( -\frac{8889588234944170142939}{7031250} a + \frac{1209719733278025672168}{390625} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 885 a - 2449\) , \( -24162 a + 61154\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(885a-2449\right){x}-24162a+61154$ |
150.1-e2 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{2} \cdot 5^{6} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \) |
$3.762559272$ |
$1.248395236$ |
1.917607978 |
\( -\frac{273359449}{1536000} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -14\) , \( -64\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-14{x}-64$ |
150.1-e3 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3 \) |
$1.254186424$ |
$11.23555713$ |
1.917607978 |
\( \frac{357911}{2160} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 1\) , \( 2\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}+2$ |
150.1-e4 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{30} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \) |
$7.525118545$ |
$0.624197618$ |
1.917607978 |
\( -\frac{26673883482189453500771}{715255737304687500} a + \frac{5545867307448315927528}{59604644775390625} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 1310 a - 1414\) , \( -25288 a + 58064\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(1310a-1414\right){x}-25288a+58064$ |
150.1-e5 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{24} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.2 |
$1$ |
\( 2^{4} \) |
$3.762559272$ |
$1.248395236$ |
1.917607978 |
\( \frac{10316097499609}{5859375000} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -454\) , \( -544\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-454{x}-544$ |
150.1-e6 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{24} \cdot 5^{2} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{4} \cdot 3 \) |
$1.254186424$ |
$2.808889283$ |
1.917607978 |
\( \frac{35578826569}{5314410} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -69\) , \( -194\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-69{x}-194$ |
150.1-e7 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 5^{4} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.1 |
$1$ |
\( 2^{5} \cdot 3 \) |
$0.627093212$ |
$11.23555713$ |
1.917607978 |
\( \frac{702595369}{72900} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -19\) , \( 26\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-19{x}+26$ |
150.1-e8 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{30} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \) |
$7.525118545$ |
$0.624197618$ |
1.917607978 |
\( \frac{26673883482189453500771}{715255737304687500} a + \frac{5545867307448315927528}{59604644775390625} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -1310 a - 1414\) , \( 25288 a + 58064\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-1310a-1414\right){x}+25288a+58064$ |
150.1-e9 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{12} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.2 |
$1$ |
\( 2^{5} \) |
$1.881279636$ |
$1.248395236$ |
1.917607978 |
\( \frac{4102915888729}{9000000} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -334\) , \( -2368\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-334{x}-2368$ |
150.1-e10 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{8} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2Cs, 3B.1.1 |
$1$ |
\( 2^{4} \cdot 3 \) |
$1.254186424$ |
$11.23555713$ |
1.917607978 |
\( \frac{2656166199049}{33750} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -289\) , \( 1862\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-289{x}+1862$ |
150.1-e11 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{8} \cdot 5^{6} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{4} \) |
$3.762559272$ |
$0.312098809$ |
1.917607978 |
\( \frac{16778985534208729}{81000} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -5334\) , \( -150368\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-5334{x}-150368$ |
150.1-e12 |
150.1-e |
$12$ |
$24$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{10} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3 \) |
$2.508372848$ |
$5.617778566$ |
1.917607978 |
\( \frac{8889588234944170142939}{7031250} a + \frac{1209719733278025672168}{390625} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -885 a - 2449\) , \( 24162 a + 61154\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-885a-2449\right){x}+24162a+61154$ |
150.1-f1 |
150.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{5} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.179106595$ |
$10.76306994$ |
1.573990516 |
\( -\frac{112972667}{30000} a + \frac{282187521}{40000} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 39 a - 95\) , \( 256 a - 627\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(39a-95\right){x}+256a-627$ |
150.1-f2 |
150.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{3} \cdot 3 \cdot 5^{17} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.179106595$ |
$5.381534970$ |
1.573990516 |
\( -\frac{4778868950563904371}{1831054687500} a + \frac{1952082876040517781}{305175781250} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 1809 a - 4435\) , \( -63246 a + 154921\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(1809a-4435\right){x}-63246a+154921$ |
150.1-f3 |
150.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{10} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.089553297$ |
$10.76306994$ |
1.573990516 |
\( \frac{2583922302027}{1562500} a + \frac{38016780418783}{9375000} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 119 a - 295\) , \( -720 a + 1765\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(119a-295\right){x}-720a+1765$ |
150.1-f4 |
150.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
150.1 |
\( 2 \cdot 3 \cdot 5^{2} \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{8} \) |
$1.53203$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.179106595$ |
$5.381534970$ |
1.573990516 |
\( \frac{33523849577935233}{2500} a + \frac{369523465565516147}{11250} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -291 a + 645\) , \( -5778 a + 14337\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-291a+645\right){x}-5778a+14337$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.