Properties

Label 2.2.24.1-150.1-b9
Base field \(\Q(\sqrt{6}) \)
Conductor norm \( 150 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 24 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{6}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-6, 0, 1]))
 
gp: K = nfinit(Polrev([-6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-6671a-16341\right){x}+462144a+1132017\)
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([0,0]),K([-16341,-6671]),K([1132017,462144])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([0,0]),Polrev([-16341,-6671]),Polrev([1132017,462144])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,-1],K![0,0],K![-16341,-6671],K![1132017,462144]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-5a)\) = \((-a+2)\cdot(a+3)\cdot(-a-1)\cdot(-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 150 \) = \(2\cdot3\cdot5\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((9000000)\) = \((-a+2)^{12}\cdot(a+3)^{4}\cdot(-a-1)^{6}\cdot(-a+1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 81000000000000 \) = \(2^{12}\cdot3^{4}\cdot5^{6}\cdot5^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{4102915888729}{9000000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/12\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{41}{2} a + \frac{201}{4} : -\frac{283}{8} a - \frac{693}{8} : 1\right)$ $\left(-27 a - 66 : 469 a + 1149 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 5.3674891342187874081543689243486703953 \)
Tamagawa product: \( 1728 \)  =  \(( 2^{2} \cdot 3 )\cdot2^{2}\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )\)
Torsion order: \(24\)
Leading coefficient: \( 3.2869023946922702180462376495496525181 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(2\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)
\((a+3)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-a-1)\) \(5\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-a+1)\) \(5\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 150.1-b consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 90.c3
\(\Q\) 960.p3