Properties

Label 2.2.24.1-150.1-b8
Base field \(\Q(\sqrt{6}) \)
Conductor norm \( 150 \)
CM no
Base change no
Q-curve yes
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{6}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-6, 0, 1]))
 
gp: K = nfinit(Polrev([-6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-35919a+87939\right){x}-803878a+1968921\)
sage: E = EllipticCurve([K([1,1]),K([0,0]),K([0,0]),K([87939,-35919]),K([1968921,-803878])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,0]),Polrev([0,0]),Polrev([87939,-35919]),Polrev([1968921,-803878])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,0],K![0,0],K![87939,-35919],K![1968921,-803878]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{6}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-211 a + 512 : 7137 a - 17473 : 1\right)$$0$$6$

Invariants

Conductor: $\frak{N}$ = \((-5a)\) = \((-a+2)\cdot(a+3)\cdot(-a-1)\cdot(-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 150 \) = \(2\cdot3\cdot5\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $89116843750a-159057000000$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((89116843750a-159057000000)\) = \((-a+2)^{3}\cdot(a+3)\cdot(-a-1)^{6}\cdot(-a+1)^{24}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -22351741790771484375000 \) = \(-2^{3}\cdot3\cdot5^{6}\cdot5^{24}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{26673883482189453500771}{715255737304687500} a + \frac{5545867307448315927528}{59604644775390625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 0.33546807088867421300964805777179189970 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 432 \)  =  \(3\cdot1\cdot( 2 \cdot 3 )\cdot( 2^{3} \cdot 3 )\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(6\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 3.2869023946922702180462376495496525181 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 4 \) (rounded)

BSD formula

$\displaystyle 3.286902395 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 4 \cdot 0.335468 \cdot 1 \cdot 432 } { {6^2 \cdot 4.898979} } \approx 3.286902395$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a+2)\) \(2\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((a+3)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-a-1)\) \(5\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-a+1)\) \(5\) \(24\) \(I_{24}\) Split multiplicative \(-1\) \(1\) \(24\) \(24\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 150.1-b consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.