Learn more

Refine search


Results (1-50 of 200 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
27648.3-a1 27648.3-a \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.336099985$ $3.669414946$ 3.488271764 \( -\frac{14624}{9} a - \frac{28192}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2 a - 2\) , \( 4 a + 2\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a-2\right){x}+4a+2$
27648.3-a2 27648.3-a \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.672199970$ $3.669414946$ 3.488271764 \( \frac{1664}{3} a - \frac{5504}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 3\) , \( -3 a + 3\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+3{x}-3a+3$
27648.3-b1 27648.3-b \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.521423100$ $0.342264428$ 3.408984042 \( -\frac{15347957750}{81} a - \frac{35138997500}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 126 a - 2817\) , \( 4863 a - 58305\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(126a-2817\right){x}+4863a-58305$
27648.3-b2 27648.3-b \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $3.521423100$ $0.342264428$ 3.408984042 \( \frac{15347957750}{81} a - \frac{35138997500}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -1154 a + 2303\) , \( -25737 a - 46065\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1154a+2303\right){x}-25737a-46065$
27648.3-b3 27648.3-b \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.880355775$ $1.369057715$ 3.408984042 \( -\frac{8000}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 6 a + 3\) , \( -9 a - 45\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(6a+3\right){x}-9a-45$
27648.3-b4 27648.3-b \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.521423100$ $0.342264428$ 3.408984042 \( -\frac{56997401750}{43046721} a + \frac{87757407500}{43046721} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -274 a + 223\) , \( -857 a + 2735\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-274a+223\right){x}-857a+2735$
27648.3-b5 27648.3-b \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.521423100$ $0.342264428$ 3.408984042 \( \frac{56997401750}{43046721} a + \frac{87757407500}{43046721} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -114 a - 417\) , \( 1743 a + 1695\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-114a-417\right){x}+1743a+1695$
27648.3-b6 27648.3-b \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.760711550$ $0.684528857$ 3.408984042 \( -\frac{100738000}{6561} a + \frac{45365000}{6561} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 6 a - 177\) , \( 135 a - 945\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(6a-177\right){x}+135a-945$
27648.3-b7 27648.3-b \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.760711550$ $0.684528857$ 3.408984042 \( \frac{100738000}{6561} a + \frac{45365000}{6561} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -74 a + 143\) , \( -465 a - 705\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-74a+143\right){x}-465a-705$
27648.3-b8 27648.3-b \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.440177887$ $1.369057715$ 3.408984042 \( \frac{2744000}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 46 a + 23\) , \( 51 a + 255\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(46a+23\right){x}+51a+255$
27648.3-c1 27648.3-c \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.590064514$ $2.654047663$ 5.968132565 \( \frac{79904}{3} a - \frac{65312}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -8 a + 8\) , \( -2 a + 16\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-8a+8\right){x}-2a+16$
27648.3-c2 27648.3-c \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.397516128$ $2.654047663$ 5.968132565 \( \frac{1408}{9} a + \frac{128}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 3\) , \( a - 5\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+3{x}+a-5$
27648.3-c3 27648.3-c \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.397516128$ $1.327023831$ 5.968132565 \( -\frac{414344}{81} a + \frac{534752}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 10 a - 37\) , \( 55 a - 77\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(10a-37\right){x}+55a-77$
27648.3-c4 27648.3-c \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.590064514$ $1.327023831$ 5.968132565 \( -\frac{749576}{3} a + \frac{321776}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 30 a + 63\) , \( 103 a - 161\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(30a+63\right){x}+103a-161$
27648.3-d1 27648.3-d \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.864418437$ $0.589460860$ 3.108446208 \( \frac{105306568}{531441} a + \frac{136151936}{531441} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 50 a + 43\) , \( -353 a - 253\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(50a+43\right){x}-353a-253$
27648.3-d2 27648.3-d \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.932209218$ $1.178921721$ 3.108446208 \( -\frac{1668992}{729} a + \frac{3939968}{729} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -20 a - 37\) , \( -51 a - 93\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-20a-37\right){x}-51a-93$
27648.3-d3 27648.3-d \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.864418437$ $1.178921721$ 3.108446208 \( \frac{24685856}{6561} a + \frac{51528992}{6561} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -28 a - 32\) , \( -86 a - 52\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-28a-32\right){x}-86a-52$
27648.3-d4 27648.3-d \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.864418437$ $0.589460860$ 3.108446208 \( -\frac{576294904}{27} a + \frac{292647184}{27} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -290 a - 577\) , \( -3993 a - 4737\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-290a-577\right){x}-3993a-4737$
27648.3-e1 27648.3-e \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.359626274$ $1.088072633$ 4.184296289 \( -\frac{110584}{3} a - 1178880 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 30 a - 129\) , \( 255 a - 561\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(30a-129\right){x}+255a-561$
27648.3-e2 27648.3-e \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.359626274$ $1.088072633$ 4.184296289 \( \frac{1862600}{81} a - \frac{2730832}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -30 a - 69\) , \( 159 a + 147\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-30a-69\right){x}+159a+147$
27648.3-e3 27648.3-e \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.679813137$ $2.176145266$ 4.184296289 \( -640 a + \frac{6784}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -9\) , \( 9 a - 9\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}-9{x}+9a-9$
27648.3-e4 27648.3-e \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.339906568$ $2.176145266$ 4.184296289 \( \frac{109408}{81} a + \frac{158240}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2 a + 10\) , \( -8 a + 14\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a+10\right){x}-8a+14$
27648.3-f1 27648.3-f \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $4.030505696$ $0.371031051$ 4.229750882 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 62 a + 31\) , \( -1737 a + 751\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(62a+31\right){x}-1737a+751$
27648.3-f2 27648.3-f \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.503813212$ $2.968248410$ 4.229750882 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 2 a + 1\) , \( 3 a + 1\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(2a+1\right){x}+3a+1$
27648.3-f3 27648.3-f \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.007626424$ $1.484124205$ 4.229750882 \( \frac{35152}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -18 a - 9\) , \( 23 a - 25\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-18a-9\right){x}+23a-25$
27648.3-f4 27648.3-f \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.015252848$ $0.742062102$ 4.229750882 \( \frac{1556068}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -98 a - 49\) , \( -457 a + 95\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-98a-49\right){x}-457a+95$
27648.3-f5 27648.3-f \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.061011393$ $0.185515525$ 4.229750882 \( -\frac{2327042746553}{43046721} a + \frac{2081263802600}{43046721} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 1902 a - 1569\) , \( -45913 a + 623\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(1902a-1569\right){x}-45913a+623$
27648.3-f6 27648.3-f \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.015252848$ $0.185515525$ 4.229750882 \( \frac{2327042746553}{43046721} a + \frac{2081263802600}{43046721} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 782 a + 2911\) , \( -40761 a + 36463\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(782a+2911\right){x}-40761a+36463$
27648.3-f7 27648.3-f \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.015252848$ $0.742062102$ 4.229750882 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -258 a - 129\) , \( 1943 a - 1009\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-258a-129\right){x}+1943a-1009$
27648.3-f8 27648.3-f \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.030505696$ $0.371031051$ 4.229750882 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -1538 a - 769\) , \( -29257 a + 10319\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1538a-769\right){x}-29257a+10319$
27648.3-g1 27648.3-g \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.775452707$ $0.419444296$ 3.679887945 \( -\frac{5577343220}{531441} a - \frac{1362907864}{531441} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -46 a + 427\) , \( 2223 a + 1075\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-46a+427\right){x}+2223a+1075$
27648.3-g2 27648.3-g \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.101810829$ $0.419444296$ 3.679887945 \( \frac{5577343220}{531441} a - \frac{1362907864}{531441} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 154 a - 373\) , \( 1847 a - 2605\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(154a-373\right){x}+1847a-2605$
27648.3-g3 27648.3-g \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.550905414$ $0.838888592$ 3.679887945 \( -\frac{219488}{729} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -26 a - 13\) , \( 155 a - 85\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-26a-13\right){x}+155a-85$
27648.3-g4 27648.3-g \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.101810829$ $1.677777184$ 3.679887945 \( \frac{19056256}{27} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -36 a - 18\) , \( 95 a - 70\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-36a-18\right){x}+95a-70$
27648.3-h1 27648.3-h \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.250014161$ $2.080560907$ 2.942524130 \( -\frac{167792}{9} a - \frac{21616}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 10 a - 13\) , \( 31 a - 5\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(10a-13\right){x}+31a-5$
27648.3-h2 27648.3-h \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.500028323$ $4.161121815$ 2.942524130 \( \frac{3584}{3} a + \frac{4096}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -3\) , \( a + 1\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}-3{x}+a+1$
27648.3-i1 27648.3-i \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.084415963$ 0.766797881 \( -\frac{1369984}{243} a - \frac{60155264}{243} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 72 a - 33\) , \( 325 a + 175\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(72a-33\right){x}+325a+175$
27648.3-i2 27648.3-i \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.084415963$ 0.766797881 \( \frac{4722784}{59049} a + \frac{38018528}{59049} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 20 a + 4\) , \( -46 a + 48\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(20a+4\right){x}-46a+48$
27648.3-j1 27648.3-j \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.979093942$ 1.384647931 \( \frac{335248}{729} a + \frac{350000}{729} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 10 a + 35\) , \( -17 a + 139\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(10a+35\right){x}-17a+139$
27648.3-j2 27648.3-j \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.958187884$ 1.384647931 \( -\frac{48640}{27} a + \frac{74752}{27} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -15\) , \( a + 13\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}-15{x}+a+13$
27648.3-k1 27648.3-k \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $2$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.995328312$ $1.088072633$ 6.140691021 \( \frac{110584}{3} a - 1178880 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -34 a + 127\) , \( -425 a - 289\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-34a+127\right){x}-425a-289$
27648.3-k2 27648.3-k \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.498832078$ $1.088072633$ 6.140691021 \( -\frac{1862600}{81} a - \frac{2730832}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -54 a + 27\) , \( -81 a + 243\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-54a+27\right){x}-81a+243$
27648.3-k3 27648.3-k \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.498832078$ $2.176145266$ 6.140691021 \( 640 a + \frac{6784}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -4 a + 7\) , \( -11 a - 1\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+7\right){x}-11a-1$
27648.3-k4 27648.3-k \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.498832078$ $2.176145266$ 6.140691021 \( -\frac{109408}{81} a + \frac{158240}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 6 a - 6\) , \( 12 a + 6\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(6a-6\right){x}+12a+6$
27648.3-l1 27648.3-l \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.395981564$ $1.821628123$ 3.596287499 \( \frac{2820064}{9} a - \frac{1154272}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 24 a - 24\) , \( -58 a + 20\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(24a-24\right){x}-58a+20$
27648.3-l2 27648.3-l \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.348995391$ $0.910814061$ 3.596287499 \( -\frac{8113672}{81} a - \frac{1280704}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 98 a - 5\) , \( -297 a - 365\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(98a-5\right){x}-297a-365$
27648.3-l3 27648.3-l \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.697990782$ $1.821628123$ 3.596287499 \( \frac{15232}{81} a + \frac{106112}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 8 a - 5\) , \( 9 a - 5\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(8a-5\right){x}+9a-5$
27648.3-l4 27648.3-l \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.348995391$ $0.910814061$ 3.596287499 \( -\frac{1905752}{6561} a + \frac{14345072}{6561} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -42 a + 15\) , \( 23 a - 97\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-42a+15\right){x}+23a-97$
27648.3-m1 27648.3-m \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.589460860$ 1.667247087 \( -\frac{105306568}{531441} a + \frac{136151936}{531441} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 58 a + 11\) , \( 207 a - 477\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(58a+11\right){x}+207a-477$
27648.3-m2 27648.3-m \(\Q(\sqrt{-2}) \) \( 2^{10} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.178921721$ 1.667247087 \( \frac{1668992}{729} a + \frac{3939968}{729} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -32 a + 11\) , \( 9 a - 117\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-32a+11\right){x}+9a-117$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.