| Label |
Base field |
Conductor norm |
Conductor label |
Isogeny class |
Weierstrass coefficients |
| 9.1-CMa1 |
\(\Q(\sqrt{-2}) \)
|
9 |
9.1 |
9.1-CMa |
\( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -1\) , \( 0\bigr] \) |
| 9.3-CMa1 |
\(\Q(\sqrt{-2}) \)
|
9 |
9.3 |
9.3-CMa |
\( \bigl[a\) , \( a + 1\) , \( 1\) , \( -a - 1\) , \( 0\bigr] \) |
| 32.1-a1 |
\(\Q(\sqrt{-2}) \)
|
32 |
32.1 |
32.1-a |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \) |
| 32.1-a2 |
\(\Q(\sqrt{-2}) \)
|
32 |
32.1 |
32.1-a |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
| 32.1-a3 |
\(\Q(\sqrt{-2}) \)
|
32 |
32.1 |
32.1-a |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -2\) , \( 3\bigr] \) |
| 32.1-a4 |
\(\Q(\sqrt{-2}) \)
|
32 |
32.1 |
32.1-a |
\( \bigl[a\) , \( -1\) , \( a\) , \( -1\) , \( 0\bigr] \) |
| 51.1-a1 |
\(\Q(\sqrt{-2}) \)
|
51 |
51.1 |
51.1-a |
\( \bigl[a\) , \( a - 1\) , \( 1\) , \( -a\) , \( 0\bigr] \) |
| 51.1-a2 |
\(\Q(\sqrt{-2}) \)
|
51 |
51.1 |
51.1-a |
\( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( -2 a + 2\) , \( 0\bigr] \) |
| 51.4-a1 |
\(\Q(\sqrt{-2}) \)
|
51 |
51.4 |
51.4-a |
\( \bigl[a\) , \( -a - 1\) , \( 1\) , \( 0\) , \( 0\bigr] \) |
| 51.4-a2 |
\(\Q(\sqrt{-2}) \)
|
51 |
51.4 |
51.4-a |
\( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( a + 2\) , \( -a\bigr] \) |
| 54.1-a1 |
\(\Q(\sqrt{-2}) \)
|
54 |
54.1 |
54.1-a |
\( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -a - 1\) , \( -1\bigr] \) |
| 54.1-a2 |
\(\Q(\sqrt{-2}) \)
|
54 |
54.1 |
54.1-a |
\( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -a - 1\) , \( 0\bigr] \) |
| 54.1-a3 |
\(\Q(\sqrt{-2}) \)
|
54 |
54.1 |
54.1-a |
\( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -51 a + 69\) , \( 62 a + 339\bigr] \) |
| 54.1-a4 |
\(\Q(\sqrt{-2}) \)
|
54 |
54.1 |
54.1-a |
\( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -11 a + 4\) , \( -26\bigr] \) |
| 54.4-a1 |
\(\Q(\sqrt{-2}) \)
|
54 |
54.4 |
54.4-a |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( a - 1\) , \( -1\bigr] \) |
| 54.4-a2 |
\(\Q(\sqrt{-2}) \)
|
54 |
54.4 |
54.4-a |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -1\) , \( 0\bigr] \) |
| 54.4-a3 |
\(\Q(\sqrt{-2}) \)
|
54 |
54.4 |
54.4-a |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( 51 a + 69\) , \( -62 a + 339\bigr] \) |
| 54.4-a4 |
\(\Q(\sqrt{-2}) \)
|
54 |
54.4 |
54.4-a |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( 11 a + 4\) , \( -26\bigr] \) |
| 72.2-a1 |
\(\Q(\sqrt{-2}) \)
|
72 |
72.2 |
72.2-a |
\( \bigl[a\) , \( 1\) , \( a\) , \( 5\) , \( 23\bigr] \) |
| 72.2-a2 |
\(\Q(\sqrt{-2}) \)
|
72 |
72.2 |
72.2-a |
\( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
| 72.2-a3 |
\(\Q(\sqrt{-2}) \)
|
72 |
72.2 |
72.2-a |
\( \bigl[a\) , \( 1\) , \( a\) , \( 0\) , \( 0\bigr] \) |
| 72.2-a4 |
\(\Q(\sqrt{-2}) \)
|
72 |
72.2 |
72.2-a |
\( \bigl[a\) , \( 1\) , \( a\) , \( -5\) , \( 5\bigr] \) |
| 72.2-a5 |
\(\Q(\sqrt{-2}) \)
|
72 |
72.2 |
72.2-a |
\( \bigl[a\) , \( 1\) , \( a\) , \( 70 a + 85\) , \( -98 a + 559\bigr] \) |
| 72.2-a6 |
\(\Q(\sqrt{-2}) \)
|
72 |
72.2 |
72.2-a |
\( \bigl[a\) , \( 1\) , \( a\) , \( -70 a + 85\) , \( 98 a + 559\bigr] \) |
| 72.2-a7 |
\(\Q(\sqrt{-2}) \)
|
72 |
72.2 |
72.2-a |
\( \bigl[a\) , \( 1\) , \( a\) , \( -15\) , \( -27\bigr] \) |
| 72.2-a8 |
\(\Q(\sqrt{-2}) \)
|
72 |
72.2 |
72.2-a |
\( \bigl[a\) , \( 1\) , \( a\) , \( -95\) , \( 347\bigr] \) |
| 98.1-a1 |
\(\Q(\sqrt{-2}) \)
|
98 |
98.1 |
98.1-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) |
| 98.1-a2 |
\(\Q(\sqrt{-2}) \)
|
98 |
98.1 |
98.1-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) |
| 98.1-a3 |
\(\Q(\sqrt{-2}) \)
|
98 |
98.1 |
98.1-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \) |
| 98.1-a4 |
\(\Q(\sqrt{-2}) \)
|
98 |
98.1 |
98.1-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \) |
| 98.1-a5 |
\(\Q(\sqrt{-2}) \)
|
98 |
98.1 |
98.1-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \) |
| 98.1-a6 |
\(\Q(\sqrt{-2}) \)
|
98 |
98.1 |
98.1-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) |
| 99.3-a1 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.3 |
99.3-a |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -12 a - 90\) , \( 71 a + 302\bigr] \) |
| 99.3-a2 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.3 |
99.3-a |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 3 a + 95\) , \( 251 a - 30\bigr] \) |
| 99.3-a3 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.3 |
99.3-a |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -2 a - 5\) , \( a + 4\bigr] \) |
| 99.3-a4 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.3 |
99.3-a |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -2 a\) , \( -a\bigr] \) |
| 99.3-a5 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.3 |
99.3-a |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 8 a\) , \( 19 a + 22\bigr] \) |
| 99.3-a6 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.3 |
99.3-a |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 173 a - 15\) , \( 859 a + 1006\bigr] \) |
| 99.4-a1 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.4 |
99.4-a |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 10 a - 90\) , \( -72 a + 302\bigr] \) |
| 99.4-a2 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.4 |
99.4-a |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -5 a + 95\) , \( -252 a - 30\bigr] \) |
| 99.4-a3 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.4 |
99.4-a |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -5\) , \( -2 a + 4\bigr] \) |
| 99.4-a4 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.4 |
99.4-a |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 0\) , \( 0\bigr] \) |
| 99.4-a5 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.4 |
99.4-a |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -10 a\) , \( -20 a + 22\bigr] \) |
| 99.4-a6 |
\(\Q(\sqrt{-2}) \)
|
99 |
99.4 |
99.4-a |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -175 a - 15\) , \( -860 a + 1006\bigr] \) |
| 100.1-a1 |
\(\Q(\sqrt{-2}) \)
|
100 |
100.1 |
100.1-a |
\( \bigl[a\) , \( 0\) , \( a\) , \( -8\) , \( 18\bigr] \) |
| 100.1-a2 |
\(\Q(\sqrt{-2}) \)
|
100 |
100.1 |
100.1-a |
\( \bigl[a\) , \( 0\) , \( a\) , \( 2\) , \( 0\bigr] \) |
| 100.1-a3 |
\(\Q(\sqrt{-2}) \)
|
100 |
100.1 |
100.1-a |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) |
| 100.1-a4 |
\(\Q(\sqrt{-2}) \)
|
100 |
100.1 |
100.1-a |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) |
| 108.2-a1 |
\(\Q(\sqrt{-2}) \)
|
108 |
108.2 |
108.2-a |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -59 a + 4\) , \( 122 a - 261\bigr] \) |
| 108.2-a2 |
\(\Q(\sqrt{-2}) \)
|
108 |
108.2 |
108.2-a |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -48 a + 49\) , \( 7 a + 265\bigr] \) |