Learn more

Refine search


Results (1-50 of 82 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
30492.5-a1 30492.5-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.093374300$ $1.737990332$ 3.925596615 \( \frac{9938375}{274428} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( 5\) , \( -23\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}+5{x}-23$
30492.5-a2 30492.5-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.373497200$ $1.737990332$ 3.925596615 \( \frac{898128212875}{14758128} a + \frac{111407502875}{7379064} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( -21 a - 14\) , \( -56 a - 14\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-21a-14\right){x}-56a-14$
30492.5-a3 30492.5-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.373497200$ $0.868995166$ 3.925596615 \( \frac{129938649625}{7072758} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -105\) , \( -441\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-105{x}-441$
30492.5-a4 30492.5-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.373497200$ $1.737990332$ 3.925596615 \( -\frac{898128212875}{14758128} a + \frac{1120943218625}{14758128} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( 20 a - 35\) , \( 55 a - 70\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(20a-35\right){x}+55a-70$
30492.5-b1 30492.5-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.029755661$ 0.719781302 \( -\frac{520203426765625}{11054534935707648} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -1676\) , \( 5058506\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-1676{x}+5058506$
30492.5-b2 30492.5-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.029755661$ 0.719781302 \( \frac{837877046993708325936201875}{203548143019551130386432} a + \frac{4921116751997514490057468375}{101774071509775565193216} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( -30530 a + 116775\) , \( 8742315 a + 2999296\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-30530a+116775\right){x}+8742315a+2999296$
30492.5-b3 30492.5-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.029755661$ 0.719781302 \( -\frac{837877046993708325936201875}{203548143019551130386432} a + \frac{10680110550988737306051138625}{203548143019551130386432} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( 30529 a + 86246\) , \( -8742316 a + 11741612\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(30529a+86246\right){x}-8742316a+11741612$
30492.5-b4 30492.5-b \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.014877830$ 0.719781302 \( \frac{10228636028672744397625}{167006381634183168} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -452236\) , \( 115355594\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-452236{x}+115355594$
30492.5-c1 30492.5-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.281737353$ $1.492023662$ 2.542091068 \( \frac{224298330175}{5854464} a - \frac{464311431599}{17563392} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( -30 a - 6\) , \( -84 a + 28\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-30a-6\right){x}-84a+28$
30492.5-c2 30492.5-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.140868676$ $1.492023662$ 2.542091068 \( \frac{430100035}{4919376} a - \frac{302575447}{14758128} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -5 a - 4\) , \( -26 a + 32\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-5a-4\right){x}-26a+32$
30492.5-c3 30492.5-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.281737353$ $0.746011831$ 2.542091068 \( -\frac{733618073576053}{126043022028} a + \frac{1676250812281769}{126043022028} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 25 a + 116\) , \( -398 a + 392\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(25a+116\right){x}-398a+392$
30492.5-c4 30492.5-c \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.281737353$ $1.492023662$ 2.542091068 \( -\frac{779861640059}{4919376} a + \frac{469252138631}{2459688} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( 9 a - 61\) , \( -56 a + 164\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(9a-61\right){x}-56a+164$
30492.5-d1 30492.5-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.140868676$ $1.492023662$ 2.542091068 \( -\frac{430100035}{4919376} a + \frac{493862329}{7379064} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 5 a - 9\) , \( 26 a + 6\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(5a-9\right){x}+26a+6$
30492.5-d2 30492.5-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.281737353$ $0.746011831$ 2.542091068 \( \frac{733618073576053}{126043022028} a + \frac{235658184676429}{31510755507} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -25 a + 141\) , \( 398 a - 6\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-25a+141\right){x}+398a-6$
30492.5-d3 30492.5-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.281737353$ $1.492023662$ 2.542091068 \( -\frac{224298330175}{5854464} a + \frac{104291779463}{8781696} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( 29 a - 36\) , \( 83 a - 56\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(29a-36\right){x}+83a-56$
30492.5-d4 30492.5-d \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.281737353$ $1.492023662$ 2.542091068 \( \frac{779861640059}{4919376} a + \frac{158642637203}{4919376} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( -10 a - 51\) , \( 55 a + 109\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-10a-51\right){x}+55a+109$
30492.5-e1 30492.5-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.068658501$ 1.245622775 \( -\frac{333345918055753}{72923718045024} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -1444\) , \( 410800\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-1444{x}+410800$
30492.5-e2 30492.5-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.274634007$ 1.245622775 \( \frac{29609739866953}{15259926528} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -644\) , \( -2352\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-644{x}-2352$
30492.5-e3 30492.5-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.137317003$ 1.245622775 \( \frac{21184262604460873}{216872764416} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -5764\) , \( 164560\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-5764{x}+164560$
30492.5-e4 30492.5-e \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.068658501$ 1.245622775 \( \frac{86129359107301290313}{9166294368} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -92004\) , \( 10703088\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-92004{x}+10703088$
30492.5-f1 30492.5-f \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.251702057$ $3.507744261$ 2.669658166 \( \frac{4657463}{3696} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( 4\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}+4{x}$
30492.5-f2 30492.5-f \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.125851028$ $1.753872130$ 2.669658166 \( \frac{498677257}{213444} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -16\) , \( -20\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-16{x}-20$
30492.5-f3 30492.5-f \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.251702057$ $0.876936065$ 2.669658166 \( \frac{223980311017}{4278582} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -126\) , \( 486\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-126{x}+486$
30492.5-f4 30492.5-f \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.251702057$ $0.876936065$ 2.669658166 \( \frac{1285429208617}{614922} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -226\) , \( -1406\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-226{x}-1406$
30492.5-g1 30492.5-g \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.183593661$ $1.206794125$ 5.359469747 \( \frac{572783983993}{3689532} a - \frac{13140854987401}{14758128} \) \( \bigl[1\) , \( 1\) , \( a\) , \( 42 a + 68\) , \( 225 a - 386\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(42a+68\right){x}+225a-386$
30492.5-g2 30492.5-g \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.183593661$ $0.603397062$ 5.359469747 \( \frac{20601377470225}{1195408368} a - \frac{308067859793207}{5379337656} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 18 a + 257\) , \( 1194 a - 765\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(18a+257\right){x}+1194a-765$
30492.5-g3 30492.5-g \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.091796830$ $1.206794125$ 5.359469747 \( -\frac{1333385395}{2509056} a + \frac{7427898271}{8781696} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -12 a + 27\) , \( -63\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-12a+27\right){x}-63$
30492.5-g4 30492.5-g \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.183593661$ $1.206794125$ 5.359469747 \( \frac{77087474833}{45416448} a + \frac{267814383211}{158957568} \) \( \bigl[1\) , \( 0\) , \( a + 1\) , \( 28 a - 13\) , \( -45 a - 20\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(28a-13\right){x}-45a-20$
30492.5-h1 30492.5-h \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.170654232$ $0.786213477$ 5.679715075 \( \frac{3823124433857}{3748096} a - \frac{46061763089849}{78710016} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 46 a - 281\) , \( -476 a + 1629\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(46a-281\right){x}-476a+1629$
30492.5-h2 30492.5-h \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.085327116$ $0.786213477$ 5.679715075 \( \frac{22202975041}{41631744} a + \frac{608036599025}{437133312} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 56 a - 11\) , \( 108 a - 11\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(56a-11\right){x}+108a-11$
30492.5-h3 30492.5-h \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.042663558$ $0.393106738$ 5.679715075 \( -\frac{8795793561707}{17355558528} a + \frac{330433405976437}{182233364544} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -204 a - 31\) , \( 768 a + 473\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-204a-31\right){x}+768a+473$
30492.5-h4 30492.5-h \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.170654232$ $0.786213477$ 5.679715075 \( -\frac{132896426793169}{2952790016} a + \frac{1288670375572607}{31004295168} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( -51 a + 172\) , \( -519 a - 268\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-51a+172\right){x}-519a-268$
30492.5-i1 30492.5-i \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.245668761$ $0.938898667$ 5.579555652 \( \frac{12843449529025}{72855552} a - \frac{2041144479881}{24285184} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( -30 a - 121\) , \( -276 a - 515\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-30a-121\right){x}-276a-515$
30492.5-i2 30492.5-i \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.245668761$ $0.469449333$ 5.579555652 \( -\frac{3397904442475825}{72024584016} a - \frac{34788956298457}{6002048668} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -108 a - 387\) , \( -1428 a - 2643\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-108a-387\right){x}-1428a-2643$
30492.5-i3 30492.5-i \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.122834380$ $0.938898667$ 5.579555652 \( -\frac{24892936625}{236130048} a + \frac{19918759697}{118065024} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 12 a - 27\) , \( -108 a - 27\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(12a-27\right){x}-108a-27$
30492.5-i4 30492.5-i \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.245668761$ $0.938898667$ 5.579555652 \( \frac{4943811108625}{1498742784} a + \frac{15828272538103}{2248114176} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( -59 a + 16\) , \( -147 a + 180\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-59a+16\right){x}-147a+180$
30492.5-j1 30492.5-j \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/6\Z$ $1$ $1.602486466$ 2.422731811 \( \frac{14458878977}{162624} a - \frac{3223192813}{104544} \) \( \bigl[1\) , \( 1\) , \( a\) , \( -24 a + 43\) , \( 22 a + 105\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-24a+43\right){x}+22a+105$
30492.5-j2 30492.5-j \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.534162155$ 2.422731811 \( -\frac{343518495931463}{16666845888} a - \frac{1062352180324265}{50000537664} \) \( \bigl[1\) , \( a\) , \( 1\) , \( -130 a - 212\) , \( 1151 a + 990\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-130a-212\right){x}+1151a+990$
30492.5-j3 30492.5-j \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $0.534162155$ 2.422731811 \( \frac{3578423985109}{4861163384} a + \frac{4424606393381}{14583490152} \) \( \bigl[1\) , \( 1\) , \( a\) , \( 21 a - 152\) , \( 235 a + 498\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(21a-152\right){x}+235a+498$
30492.5-j4 30492.5-j \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/6\Z$ $1$ $1.602486466$ 2.422731811 \( -\frac{145449919}{548856} a + \frac{966173977}{617463} \) \( \bigl[1\) , \( a\) , \( 1\) , \( 5 a + 13\) , \( 17 a\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(5a+13\right){x}+17a$
30492.5-k1 30492.5-k \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.183593661$ $1.206794125$ 5.359469747 \( -\frac{572783983993}{3689532} a - \frac{3616573017143}{4919376} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( -43 a + 110\) , \( -226 a - 161\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-43a+110\right){x}-226a-161$
30492.5-k2 30492.5-k \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.183593661$ $0.603397062$ 5.359469747 \( -\frac{20601377470225}{1195408368} a - \frac{430723322354389}{10758675312} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -18 a + 275\) , \( -1194 a + 429\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-18a+275\right){x}-1194a+429$
30492.5-k3 30492.5-k \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.091796830$ $1.206794125$ 5.359469747 \( \frac{1333385395}{2509056} a + \frac{5522098777}{17563392} \) \( \bigl[1\) , \( a\) , \( 0\) , \( 12 a + 15\) , \( -63\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(12a+15\right){x}-63$
30492.5-k4 30492.5-k \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.183593661$ $1.206794125$ 5.359469747 \( -\frac{77087474833}{45416448} a + \frac{32583063341}{9633792} \) \( \bigl[1\) , \( 0\) , \( a\) , \( -29 a + 16\) , \( 44 a - 64\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-29a+16\right){x}+44a-64$
30492.5-l1 30492.5-l \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.170654232$ $0.786213477$ 5.679715075 \( \frac{132896426793169}{2952790016} a - \frac{213484211511335}{62008590336} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 51 a + 121\) , \( 519 a - 787\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(51a+121\right){x}+519a-787$
30492.5-l2 30492.5-l \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.042663558$ $0.393106738$ 5.679715075 \( \frac{8795793561707}{17355558528} a + \frac{476155147157027}{364466729088} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( 204 a - 235\) , \( -768 a + 1241\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(204a-235\right){x}-768a+1241$
30492.5-l3 30492.5-l \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.085327116$ $0.786213477$ 5.679715075 \( -\frac{22202975041}{41631744} a + \frac{1682335673911}{874266624} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( -56 a + 45\) , \( -108 a + 97\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(-56a+45\right){x}-108a+97$
30492.5-l4 30492.5-l \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.170654232$ $0.786213477$ 5.679715075 \( -\frac{3823124433857}{3748096} a + \frac{8555962505287}{19677504} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -44 a - 237\) , \( 521 a + 1389\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-44a-237\right){x}+521a+1389$
30492.5-m1 30492.5-m \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.245668761$ $0.469449333$ 5.579555652 \( \frac{3397904442475825}{72024584016} a - \frac{3815371918057309}{72024584016} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( 108 a - 495\) , \( 1428 a - 4071\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(108a-495\right){x}+1428a-4071$
30492.5-m2 30492.5-m \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.122834380$ $0.938898667$ 5.579555652 \( \frac{24892936625}{236130048} a + \frac{14944582769}{236130048} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( -12 a - 15\) , \( 108 a - 135\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(-12a-15\right){x}+108a-135$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.