Learn more

Refine search


Results (1-50 of 70927 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16.1-CMa1 16.1-CMa Q(7)\Q(\sqrt{-7}) 24 2^{4} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z 7-7 U(1)\mathrm{U}(1) 11 6.5409647646.540964764 0.309031537 3375 -3375 [a \bigl[a , a1 -a - 1 , 0 0 , 1 1 , 0] 0\bigr] y2+axy=x3+(a1)x2+x{y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+{x}
16.1-CMa2 16.1-CMa Q(7)\Q(\sqrt{-7}) 24 2^{4} 0 Z/4Z\Z/4\Z 28-28 U(1)\mathrm{U}(1) 11 3.2704823823.270482382 0.309031537 16581375 16581375 [a \bigl[a , a1 -a - 1 , 0 0 , 15a+11 -15 a + 11 , 7a+26] -7 a + 26\bigr] y2+axy=x3+(a1)x2+(15a+11)x7a+26{y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-15a+11\right){x}-7a+26
16.5-CMa1 16.5-CMa Q(7)\Q(\sqrt{-7}) 24 2^{4} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z 7-7 U(1)\mathrm{U}(1) 11 6.5409647646.540964764 0.309031537 3375 -3375 [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 0 0 , 0] 0\bigr] y2+(a+1)xy+(a+1)y=x3+x2{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}
16.5-CMa2 16.5-CMa Q(7)\Q(\sqrt{-7}) 24 2^{4} 0 Z/4Z\Z/4\Z 28-28 U(1)\mathrm{U}(1) 11 3.2704823823.270482382 0.309031537 16581375 16581375 [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 15a5 15 a - 5 , 22a+14] 22 a + 14\bigr] y2+(a+1)xy+(a+1)y=x3+x2+(15a5)x+22a+14{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(15a-5\right){x}+22a+14
28.2-a1 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8754171350.875417135 0.330876576 5483477316251835008 -\frac{548347731625}{1835008} [1 \bigl[1 , 0 0 , 1 1 , 171 -171 , 874] -874\bigr] y2+xy+y=x3171x874{y}^2+{x}{y}+{y}={x}^{3}-171{x}-874
28.2-a2 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.6262514052.626251405 0.330876576 10538337875200704a13018580375100352 -\frac{10538337875}{200704} a - \frac{13018580375}{100352} [1 \bigl[1 , a a , a+1 a + 1 , 10a+15 -10 a + 15 , 5a16] -5 a - 16\bigr] y2+xy+(a+1)y=x3+ax2+(10a+15)x5a16{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-10a+15\right){x}-5a-16
28.2-a3 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.6262514052.626251405 0.330876576 10538337875200704a36575498625200704 \frac{10538337875}{200704} a - \frac{36575498625}{200704} [1 \bigl[1 , a+1 -a + 1 , a a , 9a+6 9 a + 6 , 4a20] 4 a - 20\bigr] y2+xy+ay=x3+(a+1)x2+(9a+6)x+4a20{y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(9a+6\right){x}+4a-20
28.2-a4 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 7.8787542167.878754216 0.330876576 831875112a166375112 -\frac{831875}{112} a - \frac{166375}{112} [1 \bigl[1 , a+1 -a + 1 , a a , a+1 -a + 1 , a+1] -a + 1\bigr] y2+xy+ay=x3+(a+1)x2+(a+1)xa+1{y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a+1\right){x}-a+1
28.2-a5 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 7.8787542167.878754216 0.330876576 831875112a49912556 \frac{831875}{112} a - \frac{499125}{56} [1 \bigl[1 , a a , a+1 a + 1 , 0 0 , 0] 0\bigr] y2+xy+(a+1)y=x3+ax2{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}
28.2-a6 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z SU(2)\mathrm{SU}(2) 11 7.8787542167.878754216 0.330876576 1562528 -\frac{15625}{28} [1 \bigl[1 , 0 0 , 1 1 , 1 -1 , 0] 0\bigr] y2+xy+y=x3x{y}^2+{x}{y}+{y}={x}^{3}-{x}
28.2-a7 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.6262514052.626251405 0.330876576 993837521952 \frac{9938375}{21952} [1 \bigl[1 , 0 0 , 1 1 , 4 4 , 6] -6\bigr] y2+xy+y=x3+4x6{y}^2+{x}{y}+{y}={x}^{3}+4{x}-6
28.2-a8 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8754171350.875417135 0.330876576 70135314719125481036337152a+179276652423375240518168576 -\frac{70135314719125}{481036337152} a + \frac{179276652423375}{240518168576} [1 \bigl[1 , a a , a+1 a + 1 , 30a40 30 a - 40 , 30a154] -30 a - 154\bigr] y2+xy+(a+1)y=x3+ax2+(30a40)x30a154{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(30a-40\right){x}-30a-154
28.2-a9 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8754171350.875417135 0.330876576 70135314719125481036337152a+288417990127625481036337152 \frac{70135314719125}{481036337152} a + \frac{288417990127625}{481036337152} [1 \bigl[1 , a+1 -a + 1 , a a , 31a9 -31 a - 9 , 29a183] 29 a - 183\bigr] y2+xy+ay=x3+(a+1)x2+(31a9)x+29a183{y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-31a-9\right){x}+29a-183
28.2-a10 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 1.3131257021.313125702 0.330876576 4956477625941192 \frac{4956477625}{941192} [1 \bigl[1 , 0 0 , 1 1 , 36 -36 , 70] -70\bigr] y2+xy+y=x336x70{y}^2+{x}{y}+{y}={x}^{3}-36{x}-70
28.2-a11 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 3.9393771083.939377108 0.330876576 12878762598 \frac{128787625}{98} [1 \bigl[1 , 0 0 , 1 1 , 11 -11 , 12] 12\bigr] y2+xy+y=x311x+12{y}^2+{x}{y}+{y}={x}^{3}-11{x}+12
28.2-a12 28.2-a Q(7)\Q(\sqrt{-7}) 227 2^{2} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4377085670.437708567 0.330876576 225143905569962525088 \frac{2251439055699625}{25088} [1 \bigl[1 , 0 0 , 1 1 , 2731 -2731 , 55146] -55146\bigr] y2+xy+y=x32731x55146{y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146
44.3-a1 44.3-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.6808882251.680888225 0.635316032 277566824048985184a392939667603742592 \frac{2775668240489}{85184} a - \frac{3929396676037}{42592} [1 \bigl[1 , a a , 0 0 , 55a+91 -55 a + 91 , 87a+359] 87 a + 359\bigr] y2+xy=x3+ax2+(55a+91)x+87a+359{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-55a+91\right){x}+87a+359
44.3-a2 44.3-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8404441120.840444112 0.635316032 41728910180660407200859416110144a5044929390482523100429708055072 -\frac{41728910180660407}{200859416110144} a - \frac{5044929390482523}{100429708055072} [1 \bigl[1 , 1 1 , a+1 a + 1 , 4a+40 -4 a + 40 , 135a+83] 135 a + 83\bigr] y2+xy+(a+1)y=x3+x2+(4a+40)x+135a+83{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-4a+40\right){x}+135a+83
44.3-a3 44.3-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/12Z\Z/12\Z SU(2)\mathrm{SU}(2) 11 5.0426646755.042664675 0.635316032 222244945056a+4204360545056 \frac{2222449}{45056} a + \frac{42043605}{45056} [1 \bigl[1 , a a , 0 0 , 1 1 , 1] 1\bigr] y2+xy=x3+ax2+x+1{y}^2+{x}{y}={x}^{3}+a{x}^{2}+{x}+1
44.3-a4 44.3-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6808882251.680888225 0.635316032 7416846808608922330474496a+4540074371741911165237248 -\frac{74168468086089}{22330474496} a + \frac{45400743717419}{11165237248} [1 \bigl[1 , a+1 -a + 1 , 1 1 , 14a17 14 a - 17 , 19a+5] -19 a + 5\bigr] y2+xy+y=x3+(a+1)x2+(14a17)x19a+5{y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(14a-17\right){x}-19a+5
44.3-a5 44.3-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z SU(2)\mathrm{SU}(2) 11 5.0426646755.042664675 0.635316032 9983617744a+234485517744 -\frac{998361}{7744} a + \frac{23448551}{7744} [1 \bigl[1 , 1 1 , a+1 a + 1 , a a , 1] 1\bigr] y2+xy+(a+1)y=x3+x2+ax+1{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+a{x}+1
44.3-a6 44.3-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6808882251.680888225 0.635316032 494538306109897256313856a9918012472553628156928 \frac{49453830610989}{7256313856} a - \frac{991801247255}{3628156928} [1 \bigl[1 , 1 1 , a+1 a + 1 , 14a10 -14 a - 10 , 27a9] 27 a - 9\bigr] y2+xy+(a+1)y=x3+x2+(14a10)x+27a9{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-14a-10\right){x}+27a-9
44.3-a7 44.3-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 5.0426646755.042664675 0.635316032 71532632816a+409100991408 \frac{7153263}{2816} a + \frac{40910099}{1408} [1 \bigl[1 , a+1 -a + 1 , 1 1 , a+3 -a + 3 , 3a+1] -3 a + 1\bigr] y2+xy+y=x3+(a+1)x2+(a+3)x3a+1{y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a+3\right){x}-3a+1
44.3-a8 44.3-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.5213323372.521332337 0.635316032 67333244623117128a+557731279327117128 -\frac{67333244623}{117128} a + \frac{557731279327}{117128} [1 \bigl[1 , 1 1 , a+1 a + 1 , 21a 21 a , 20a+57] 20 a + 57\bigr] y2+xy+(a+1)y=x3+x2+21ax+20a+57{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+21a{x}+20a+57
44.4-a1 44.4-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.6808882251.680888225 0.635316032 277566824048985184a508312511158585184 -\frac{2775668240489}{85184} a - \frac{5083125111585}{85184} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 55a+36 55 a + 36 , 87a+446] -87 a + 446\bigr] y2+xy=x3+(a+1)x2+(55a+36)x87a+446{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(55a+36\right){x}-87a+446
44.4-a2 44.4-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8404441120.840444112 0.635316032 41728910180660407200859416110144a51818768961625453200859416110144 \frac{41728910180660407}{200859416110144} a - \frac{51818768961625453}{200859416110144} [1 \bigl[1 , 1 1 , a a , 3a+37 3 a + 37 , 136a+219] -136 a + 219\bigr] y2+xy+ay=x3+x2+(3a+37)x136a+219{y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(3a+37\right){x}-136a+219
44.4-a3 44.4-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/12Z\Z/12\Z SU(2)\mathrm{SU}(2) 11 5.0426646755.042664675 0.635316032 222244945056a+2213302722528 -\frac{2222449}{45056} a + \frac{22133027}{22528} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 1 1 , 1] 1\bigr] y2+xy=x3+(a+1)x2+x+1{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+{x}+1
44.4-a4 44.4-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6808882251.680888225 0.635316032 7416846808608922330474496a+1663301934874922330474496 \frac{74168468086089}{22330474496} a + \frac{16633019348749}{22330474496} [1 \bigl[1 , a a , 1 1 , 14a3 -14 a - 3 , 19a14] 19 a - 14\bigr] y2+xy+y=x3+ax2+(14a3)x+19a14{y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-14a-3\right){x}+19a-14
44.4-a5 44.4-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/2ZZ/6Z\Z/2\Z\oplus\Z/6\Z SU(2)\mathrm{SU}(2) 11 5.0426646755.042664675 0.635316032 9983617744a+112250953872 \frac{998361}{7744} a + \frac{11225095}{3872} [1 \bigl[1 , 1 1 , a a , 2a+2 -2 a + 2 , a+2] -a + 2\bigr] y2+xy+ay=x3+x2+(2a+2)xa+2{y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-2a+2\right){x}-a+2
44.4-a6 44.4-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6808882251.680888225 0.635316032 494538306109897256313856a+474702281164797256313856 -\frac{49453830610989}{7256313856} a + \frac{47470228116479}{7256313856} [1 \bigl[1 , 1 1 , a a , 13a23 13 a - 23 , 28a+19] -28 a + 19\bigr] y2+xy+ay=x3+x2+(13a23)x28a+19{y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(13a-23\right){x}-28a+19
44.4-a7 44.4-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 5.0426646755.042664675 0.635316032 71532632816a+889734612816 -\frac{7153263}{2816} a + \frac{88973461}{2816} [1 \bigl[1 , a a , 1 1 , a+2 a + 2 , 3a2] 3 a - 2\bigr] y2+xy+y=x3+ax2+(a+2)x+3a2{y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(a+2\right){x}+3a-2
44.4-a8 44.4-a Q(7)\Q(\sqrt{-7}) 2211 2^{2} \cdot 11 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.5213323372.521332337 0.635316032 67333244623117128a+6129975433814641 \frac{67333244623}{117128} a + \frac{61299754338}{14641} [1 \bigl[1 , 1 1 , a a , 22a+22 -22 a + 22 , 21a+78] -21 a + 78\bigr] y2+xy+ay=x3+x2+(22a+22)x21a+78{y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-22a+22\right){x}-21a+78
46.2-a1 46.2-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 6.5000755316.500075531 0.614199405 1398235392a2312648992 -\frac{13982353}{92} a - \frac{23126489}{92} [1 \bigl[1 , a1 -a - 1 , a+1 a + 1 , 4 -4 , 1] -1\bigr] y2+xy+(a+1)y=x3+(a1)x24x1{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}-4{x}-1
46.2-a2 46.2-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.2500377653.250037765 0.614199405 779426915191119364a1458583687691119364 \frac{77942691519}{1119364} a - \frac{145858368769}{1119364} [1 \bigl[1 , a -a , a a , 6a+10 -6 a + 10 , 2a+8] 2 a + 8\bigr] y2+xy+ay=x3ax2+(6a+10)x+2a+8{y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-6a+10\right){x}+2a+8
46.2-a3 46.2-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6250188821.625018882 0.614199405 5221695638593156621970562a+45422616717183156621970562 \frac{5221695638593}{156621970562} a + \frac{45422616717183}{156621970562} [1 \bigl[1 , a -a , a a , a+10 -a + 10 , 8a+30] -8 a + 30\bigr] y2+xy+ay=x3ax2+(a+10)x8a+30{y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-a+10\right){x}-8a+30
46.2-a4 46.2-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 6.5000755316.500075531 0.614199405 16953098464a+88740958464 -\frac{1695309}{8464} a + \frac{8874095}{8464} [1 \bigl[1 , a -a , a a , a -a , 0] 0\bigr] y2+xy+ay=x3ax2ax{y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}-a{x}
46.2-a5 46.2-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 6.5000755316.500075531 0.614199405 29932215888a+152915135888 \frac{2993221}{5888} a + \frac{15291513}{5888} [1 \bigl[1 , a1 a - 1 , a+1 a + 1 , a2 -a - 2 , a+1] -a + 1\bigr] y2+xy+(a+1)y=x3+(a1)x2+(a2)xa+1{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a-2\right){x}-a+1
46.2-a6 46.2-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6250188821.625018882 0.614199405 141789491364011058a+79099758115691058 -\frac{14178949136401}{1058} a + \frac{7909975811569}{1058} [1 \bigl[1 , a -a , a a , 91a+170 -91 a + 170 , 240a+618] 240 a + 618\bigr] y2+xy+ay=x3ax2+(91a+170)x+240a+618{y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-91a+170\right){x}+240a+618
46.3-a1 46.3-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 6.5000755316.500075531 0.614199405 1398235392a1855442146 \frac{13982353}{92} a - \frac{18554421}{46} [1 \bigl[1 , a+1 a + 1 , a+1 a + 1 , a4 a - 4 , a4] -a - 4\bigr] y2+xy+(a+1)y=x3+(a+1)x2+(a4)xa4{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-4\right){x}-a-4
46.3-a2 46.3-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.2500377653.250037765 0.614199405 779426915191119364a33957838625559682 -\frac{77942691519}{1119364} a - \frac{33957838625}{559682} [1 \bigl[1 , a1 a - 1 , a+1 a + 1 , 5a+4 5 a + 4 , 3a+10] -3 a + 10\bigr] y2+xy+(a+1)y=x3+(a1)x2+(5a+4)x3a+10{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5a+4\right){x}-3a+10
46.3-a3 46.3-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6250188821.625018882 0.614199405 5221695638593156621970562a+2532215617788878310985281 -\frac{5221695638593}{156621970562} a + \frac{25322156177888}{78310985281} [1 \bigl[1 , a1 a - 1 , a+1 a + 1 , 9 9 , 7a+22] 7 a + 22\bigr] y2+xy+(a+1)y=x3+(a1)x2+9x+7a+22{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+9{x}+7a+22
46.3-a4 46.3-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 6.5000755316.500075531 0.614199405 16953098464a+35893934232 \frac{1695309}{8464} a + \frac{3589393}{4232} [1 \bigl[1 , a1 a - 1 , a+1 a + 1 , 1 -1 , a] -a\bigr] y2+xy+(a+1)y=x3+(a1)x2xa{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}-{x}-a
46.3-a5 46.3-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 6.5000755316.500075531 0.614199405 29932215888a+91423672944 -\frac{2993221}{5888} a + \frac{9142367}{2944} [1 \bigl[1 , a -a , a a , 2 -2 , 1] 1\bigr] y2+xy+ay=x3ax22x+1{y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}-2{x}+1
46.3-a6 46.3-a Q(7)\Q(\sqrt{-7}) 223 2 \cdot 23 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6250188821.625018882 0.614199405 141789491364011058a3134486662416529 \frac{14178949136401}{1058} a - \frac{3134486662416}{529} [1 \bigl[1 , a1 a - 1 , a+1 a + 1 , 90a+79 90 a + 79 , 241a+858] -241 a + 858\bigr] y2+xy+(a+1)y=x3+(a1)x2+(90a+79)x241a+858{y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(90a+79\right){x}-241a+858
49.1-CMa1 49.1-CMa Q(7)\Q(\sqrt{-7}) 72 7^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 7-7 U(1)\mathrm{U}(1) 11 4.9445046004.944504600 0.934423537 3375 -3375 [1 \bigl[1 , 1 -1 , 0 0 , 2 -2 , 1] -1\bigr] y2+xy=x3x22x1{y}^2+{x}{y}={x}^{3}-{x}^{2}-2{x}-1
49.1-CMa2 49.1-CMa Q(7)\Q(\sqrt{-7}) 72 7^{2} 0 Z/2Z\Z/2\Z 28-28 U(1)\mathrm{U}(1) 11 2.4722523002.472252300 0.934423537 16581375 16581375 [1 \bigl[1 , 1 -1 , 0 0 , 37 -37 , 78] -78\bigr] y2+xy=x3x237x78{y}^2+{x}{y}={x}^{3}-{x}^{2}-37{x}-78
63.1-a1 63.1-a Q(7)\Q(\sqrt{-7}) 327 3^{2} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8620769290.862076929 0.325834452 435470313717294403 -\frac{4354703137}{17294403} [1 \bigl[1 , 0 0 , 0 0 , 34 -34 , 217] -217\bigr] y2+xy=x334x217{y}^2+{x}{y}={x}^{3}-34{x}-217
63.1-a2 63.1-a Q(7)\Q(\sqrt{-7}) 327 3^{2} \cdot 7 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 6.8966154376.896615437 0.325834452 10382363 \frac{103823}{63} [1 \bigl[1 , 0 0 , 0 0 , 1 1 , 0] 0\bigr] y2+xy=x3+x{y}^2+{x}{y}={x}^{3}+{x}
63.1-a3 63.1-a Q(7)\Q(\sqrt{-7}) 327 3^{2} \cdot 7 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 3.4483077183.448307718 0.325834452 71890573969 \frac{7189057}{3969} [1 \bigl[1 , 0 0 , 0 0 , 4 -4 , 1] -1\bigr] y2+xy=x34x1{y}^2+{x}{y}={x}^{3}-4{x}-1
63.1-a4 63.1-a Q(7)\Q(\sqrt{-7}) 327 3^{2} \cdot 7 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 1.7241538591.724153859 0.325834452 657072561745927 \frac{6570725617}{45927} [1 \bigl[1 , 0 0 , 0 0 , 39 -39 , 90] 90\bigr] y2+xy=x339x+90{y}^2+{x}{y}={x}^{3}-39{x}+90
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.