Learn more

Refine search


Results (1-50 of 70927 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16.1-CMa1 16.1-CMa \(\Q(\sqrt{-7}) \) \( 2^{4} \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $-7$ $1$ $6.540964764$ 0.309031537 \( -3375 \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+{x}$
16.1-CMa2 16.1-CMa \(\Q(\sqrt{-7}) \) \( 2^{4} \) $0$ $\Z/4\Z$ $-28$ $1$ $3.270482382$ 0.309031537 \( 16581375 \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -15 a + 11\) , \( -7 a + 26\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-15a+11\right){x}-7a+26$
16.5-CMa1 16.5-CMa \(\Q(\sqrt{-7}) \) \( 2^{4} \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $-7$ $1$ $6.540964764$ 0.309031537 \( -3375 \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}$
16.5-CMa2 16.5-CMa \(\Q(\sqrt{-7}) \) \( 2^{4} \) $0$ $\Z/4\Z$ $-28$ $1$ $3.270482382$ 0.309031537 \( 16581375 \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 15 a - 5\) , \( 22 a + 14\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(15a-5\right){x}+22a+14$
28.2-a1 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.875417135$ 0.330876576 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-171{x}-874$
28.2-a2 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/6\Z$ $1$ $2.626251405$ 0.330876576 \( -\frac{10538337875}{200704} a - \frac{13018580375}{100352} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( -10 a + 15\) , \( -5 a - 16\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-10a+15\right){x}-5a-16$
28.2-a3 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/6\Z$ $1$ $2.626251405$ 0.330876576 \( \frac{10538337875}{200704} a - \frac{36575498625}{200704} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( 9 a + 6\) , \( 4 a - 20\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(9a+6\right){x}+4a-20$
28.2-a4 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/6\Z$ $1$ $7.878754216$ 0.330876576 \( -\frac{831875}{112} a - \frac{166375}{112} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( -a + 1\) , \( -a + 1\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a+1\right){x}-a+1$
28.2-a5 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/6\Z$ $1$ $7.878754216$ 0.330876576 \( \frac{831875}{112} a - \frac{499125}{56} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}$
28.2-a6 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $7.878754216$ 0.330876576 \( -\frac{15625}{28} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}$
28.2-a7 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $2.626251405$ 0.330876576 \( \frac{9938375}{21952} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+4{x}-6$
28.2-a8 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $0.875417135$ 0.330876576 \( -\frac{70135314719125}{481036337152} a + \frac{179276652423375}{240518168576} \) \( \bigl[1\) , \( a\) , \( a + 1\) , \( 30 a - 40\) , \( -30 a - 154\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(30a-40\right){x}-30a-154$
28.2-a9 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $0.875417135$ 0.330876576 \( \frac{70135314719125}{481036337152} a + \frac{288417990127625}{481036337152} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( -31 a - 9\) , \( 29 a - 183\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-31a-9\right){x}+29a-183$
28.2-a10 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/6\Z$ $1$ $1.313125702$ 0.330876576 \( \frac{4956477625}{941192} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-36{x}-70$
28.2-a11 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/6\Z$ $1$ $3.939377108$ 0.330876576 \( \frac{128787625}{98} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-11{x}+12$
28.2-a12 28.2-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $0.437708567$ 0.330876576 \( \frac{2251439055699625}{25088} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146$
44.3-a1 44.3-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/4\Z$ $1$ $1.680888225$ 0.635316032 \( \frac{2775668240489}{85184} a - \frac{3929396676037}{42592} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -55 a + 91\) , \( 87 a + 359\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-55a+91\right){x}+87a+359$
44.3-a2 44.3-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $0.840444112$ 0.635316032 \( -\frac{41728910180660407}{200859416110144} a - \frac{5044929390482523}{100429708055072} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( -4 a + 40\) , \( 135 a + 83\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-4a+40\right){x}+135a+83$
44.3-a3 44.3-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/12\Z$ $1$ $5.042664675$ 0.635316032 \( \frac{2222449}{45056} a + \frac{42043605}{45056} \) \( \bigl[1\) , \( a\) , \( 0\) , \( 1\) , \( 1\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+{x}+1$
44.3-a4 44.3-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $1.680888225$ 0.635316032 \( -\frac{74168468086089}{22330474496} a + \frac{45400743717419}{11165237248} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 14 a - 17\) , \( -19 a + 5\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(14a-17\right){x}-19a+5$
44.3-a5 44.3-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $5.042664675$ 0.635316032 \( -\frac{998361}{7744} a + \frac{23448551}{7744} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( a\) , \( 1\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+a{x}+1$
44.3-a6 44.3-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.680888225$ 0.635316032 \( \frac{49453830610989}{7256313856} a - \frac{991801247255}{3628156928} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( -14 a - 10\) , \( 27 a - 9\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-14a-10\right){x}+27a-9$
44.3-a7 44.3-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/6\Z$ $1$ $5.042664675$ 0.635316032 \( \frac{7153263}{2816} a + \frac{40910099}{1408} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -a + 3\) , \( -3 a + 1\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a+3\right){x}-3a+1$
44.3-a8 44.3-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/6\Z$ $1$ $2.521332337$ 0.635316032 \( -\frac{67333244623}{117128} a + \frac{557731279327}{117128} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( 21 a\) , \( 20 a + 57\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+21a{x}+20a+57$
44.4-a1 44.4-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/4\Z$ $1$ $1.680888225$ 0.635316032 \( -\frac{2775668240489}{85184} a - \frac{5083125111585}{85184} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 55 a + 36\) , \( -87 a + 446\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(55a+36\right){x}-87a+446$
44.4-a2 44.4-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $0.840444112$ 0.635316032 \( \frac{41728910180660407}{200859416110144} a - \frac{51818768961625453}{200859416110144} \) \( \bigl[1\) , \( 1\) , \( a\) , \( 3 a + 37\) , \( -136 a + 219\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(3a+37\right){x}-136a+219$
44.4-a3 44.4-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/12\Z$ $1$ $5.042664675$ 0.635316032 \( -\frac{2222449}{45056} a + \frac{22133027}{22528} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 1\) , \( 1\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+{x}+1$
44.4-a4 44.4-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $1.680888225$ 0.635316032 \( \frac{74168468086089}{22330474496} a + \frac{16633019348749}{22330474496} \) \( \bigl[1\) , \( a\) , \( 1\) , \( -14 a - 3\) , \( 19 a - 14\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-14a-3\right){x}+19a-14$
44.4-a5 44.4-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $5.042664675$ 0.635316032 \( \frac{998361}{7744} a + \frac{11225095}{3872} \) \( \bigl[1\) , \( 1\) , \( a\) , \( -2 a + 2\) , \( -a + 2\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-2a+2\right){x}-a+2$
44.4-a6 44.4-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.680888225$ 0.635316032 \( -\frac{49453830610989}{7256313856} a + \frac{47470228116479}{7256313856} \) \( \bigl[1\) , \( 1\) , \( a\) , \( 13 a - 23\) , \( -28 a + 19\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(13a-23\right){x}-28a+19$
44.4-a7 44.4-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/6\Z$ $1$ $5.042664675$ 0.635316032 \( -\frac{7153263}{2816} a + \frac{88973461}{2816} \) \( \bigl[1\) , \( a\) , \( 1\) , \( a + 2\) , \( 3 a - 2\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(a+2\right){x}+3a-2$
44.4-a8 44.4-a \(\Q(\sqrt{-7}) \) \( 2^{2} \cdot 11 \) $0$ $\Z/6\Z$ $1$ $2.521332337$ 0.635316032 \( \frac{67333244623}{117128} a + \frac{61299754338}{14641} \) \( \bigl[1\) , \( 1\) , \( a\) , \( -22 a + 22\) , \( -21 a + 78\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-22a+22\right){x}-21a+78$
46.2-a1 46.2-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/4\Z$ $1$ $6.500075531$ 0.614199405 \( -\frac{13982353}{92} a - \frac{23126489}{92} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( -4\) , \( -1\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}-4{x}-1$
46.2-a2 46.2-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $3.250037765$ 0.614199405 \( \frac{77942691519}{1119364} a - \frac{145858368769}{1119364} \) \( \bigl[1\) , \( -a\) , \( a\) , \( -6 a + 10\) , \( 2 a + 8\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-6a+10\right){x}+2a+8$
46.2-a3 46.2-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $1.625018882$ 0.614199405 \( \frac{5221695638593}{156621970562} a + \frac{45422616717183}{156621970562} \) \( \bigl[1\) , \( -a\) , \( a\) , \( -a + 10\) , \( -8 a + 30\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-a+10\right){x}-8a+30$
46.2-a4 46.2-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $6.500075531$ 0.614199405 \( -\frac{1695309}{8464} a + \frac{8874095}{8464} \) \( \bigl[1\) , \( -a\) , \( a\) , \( -a\) , \( 0\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}-a{x}$
46.2-a5 46.2-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/8\Z$ $1$ $6.500075531$ 0.614199405 \( \frac{2993221}{5888} a + \frac{15291513}{5888} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -a - 2\) , \( -a + 1\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a-2\right){x}-a+1$
46.2-a6 46.2-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $1.625018882$ 0.614199405 \( -\frac{14178949136401}{1058} a + \frac{7909975811569}{1058} \) \( \bigl[1\) , \( -a\) , \( a\) , \( -91 a + 170\) , \( 240 a + 618\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-91a+170\right){x}+240a+618$
46.3-a1 46.3-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/4\Z$ $1$ $6.500075531$ 0.614199405 \( \frac{13982353}{92} a - \frac{18554421}{46} \) \( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( a - 4\) , \( -a - 4\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-4\right){x}-a-4$
46.3-a2 46.3-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $3.250037765$ 0.614199405 \( -\frac{77942691519}{1119364} a - \frac{33957838625}{559682} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 5 a + 4\) , \( -3 a + 10\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5a+4\right){x}-3a+10$
46.3-a3 46.3-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $1.625018882$ 0.614199405 \( -\frac{5221695638593}{156621970562} a + \frac{25322156177888}{78310985281} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 9\) , \( 7 a + 22\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+9{x}+7a+22$
46.3-a4 46.3-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $6.500075531$ 0.614199405 \( \frac{1695309}{8464} a + \frac{3589393}{4232} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -1\) , \( -a\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}-{x}-a$
46.3-a5 46.3-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/8\Z$ $1$ $6.500075531$ 0.614199405 \( -\frac{2993221}{5888} a + \frac{9142367}{2944} \) \( \bigl[1\) , \( -a\) , \( a\) , \( -2\) , \( 1\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}-2{x}+1$
46.3-a6 46.3-a \(\Q(\sqrt{-7}) \) \( 2 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $1.625018882$ 0.614199405 \( \frac{14178949136401}{1058} a - \frac{3134486662416}{529} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 90 a + 79\) , \( -241 a + 858\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(90a+79\right){x}-241a+858$
49.1-CMa1 49.1-CMa \(\Q(\sqrt{-7}) \) \( 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $-7$ $1$ $4.944504600$ 0.934423537 \( -3375 \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -2\) , \( -1\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-2{x}-1$
49.1-CMa2 49.1-CMa \(\Q(\sqrt{-7}) \) \( 7^{2} \) $0$ $\Z/2\Z$ $-28$ $1$ $2.472252300$ 0.934423537 \( 16581375 \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -37\) , \( -78\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-37{x}-78$
63.1-a1 63.1-a \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $0.862076929$ 0.325834452 \( -\frac{4354703137}{17294403} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -34\) , \( -217\bigr] \) ${y}^2+{x}{y}={x}^{3}-34{x}-217$
63.1-a2 63.1-a \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $6.896615437$ 0.325834452 \( \frac{103823}{63} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}$
63.1-a3 63.1-a \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $3.448307718$ 0.325834452 \( \frac{7189057}{3969} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -4\) , \( -1\bigr] \) ${y}^2+{x}{y}={x}^{3}-4{x}-1$
63.1-a4 63.1-a \(\Q(\sqrt{-7}) \) \( 3^{2} \cdot 7 \) $0$ $\Z/8\Z$ $1$ $1.724153859$ 0.325834452 \( \frac{6570725617}{45927} \) \( \bigl[1\) , \( 0\) , \( 0\) , \( -39\) , \( 90\bigr] \) ${y}^2+{x}{y}={x}^{3}-39{x}+90$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.