16.1-CMa1
16.1-CMa
2 2 2
2 2 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.1
2 4 2^{4} 2 4
2 12 2^{12} 2 1 2
0.47284 0.47284 0 . 4 7 2 8 4
( a ) (a) ( a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
yes \textsf{yes} yes
− 7 -7 − 7
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
1 1 1
2 2 2^{2} 2 2
1 1 1
6.540964764 6.540964764 6 . 5 4 0 9 6 4 7 6 4
0.309031537
− 3375 -3375 − 3 3 7 5
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , 0 0 0 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 + a x y = x 3 + ( − a − 1 ) x 2 + x {y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+{x} y 2 + a x y = x 3 + ( − a − 1 ) x 2 + x
16.1-CMa2
16.1-CMa
2 2 2
2 2 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.1
2 4 2^{4} 2 4
2 12 2^{12} 2 1 2
0.47284 0.47284 0 . 4 7 2 8 4
( a ) (a) ( a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
yes \textsf{yes} yes
− 28 -28 − 2 8
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
1 1 1
2 2 2
1 1 1
3.270482382 3.270482382 3 . 2 7 0 4 8 2 3 8 2
0.309031537
16581375 16581375 1 6 5 8 1 3 7 5
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , 0 0 0 , − 15 a + 11 -15 a + 11 − 1 5 a + 1 1 , − 7 a + 26 ] -7 a + 26\bigr] − 7 a + 2 6 ]
y 2 + a x y = x 3 + ( − a − 1 ) x 2 + ( − 15 a + 11 ) x − 7 a + 26 {y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-15a+11\right){x}-7a+26 y 2 + a x y = x 3 + ( − a − 1 ) x 2 + ( − 1 5 a + 1 1 ) x − 7 a + 2 6
16.5-CMa1
16.5-CMa
2 2 2
2 2 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.5
2 4 2^{4} 2 4
2 12 2^{12} 2 1 2
0.47284 0.47284 0 . 4 7 2 8 4
( − a + 1 ) (-a+1) ( − a + 1 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
yes \textsf{yes} yes
− 7 -7 − 7
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
1 1 1
2 2 2^{2} 2 2
1 1 1
6.540964764 6.540964764 6 . 5 4 0 9 6 4 7 6 4
0.309031537
− 3375 -3375 − 3 3 7 5
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , a + 1 a + 1 a + 1 , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2} y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2
16.5-CMa2
16.5-CMa
2 2 2
2 2 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.5
2 4 2^{4} 2 4
2 12 2^{12} 2 1 2
0.47284 0.47284 0 . 4 7 2 8 4
( − a + 1 ) (-a+1) ( − a + 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
yes \textsf{yes} yes
− 28 -28 − 2 8
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
1 1 1
2 2 2
1 1 1
3.270482382 3.270482382 3 . 2 7 0 4 8 2 3 8 2
0.309031537
16581375 16581375 1 6 5 8 1 3 7 5
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , a + 1 a + 1 a + 1 , 15 a − 5 15 a - 5 1 5 a − 5 , 22 a + 14 ] 22 a + 14\bigr] 2 2 a + 1 4 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 + ( 15 a − 5 ) x + 22 a + 14 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(15a-5\right){x}+22a+14 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 + ( 1 5 a − 5 ) x + 2 2 a + 1 4
28.2-a1
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 36 ⋅ 7 2 2^{36} \cdot 7^{2} 2 3 6 ⋅ 7 2
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.2
1 1 1
2 3 2^{3} 2 3
1 1 1
0.875417135 0.875417135 0 . 8 7 5 4 1 7 1 3 5
0.330876576
− 548347731625 1835008 -\frac{548347731625}{1835008} − 1 8 3 5 0 0 8 5 4 8 3 4 7 7 3 1 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 171 -171 − 1 7 1 , − 874 ] -874\bigr] − 8 7 4 ]
y 2 + x y + y = x 3 − 171 x − 874 {y}^2+{x}{y}+{y}={x}^{3}-171{x}-874 y 2 + x y + y = x 3 − 1 7 1 x − 8 7 4
28.2-a2
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 15 ⋅ 7 3 2^{15} \cdot 7^{3} 2 1 5 ⋅ 7 3
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.626251405 2.626251405 2 . 6 2 6 2 5 1 4 0 5
0.330876576
− 10538337875 200704 a − 13018580375 100352 -\frac{10538337875}{200704} a - \frac{13018580375}{100352} − 2 0 0 7 0 4 1 0 5 3 8 3 3 7 8 7 5 a − 1 0 0 3 5 2 1 3 0 1 8 5 8 0 3 7 5
[ 1 \bigl[1 [ 1 , a a a , a + 1 a + 1 a + 1 , − 10 a + 15 -10 a + 15 − 1 0 a + 1 5 , − 5 a − 16 ] -5 a - 16\bigr] − 5 a − 1 6 ]
y 2 + x y + ( a + 1 ) y = x 3 + a x 2 + ( − 10 a + 15 ) x − 5 a − 16 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-10a+15\right){x}-5a-16 y 2 + x y + ( a + 1 ) y = x 3 + a x 2 + ( − 1 0 a + 1 5 ) x − 5 a − 1 6
28.2-a3
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 15 ⋅ 7 3 2^{15} \cdot 7^{3} 2 1 5 ⋅ 7 3
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.626251405 2.626251405 2 . 6 2 6 2 5 1 4 0 5
0.330876576
10538337875 200704 a − 36575498625 200704 \frac{10538337875}{200704} a - \frac{36575498625}{200704} 2 0 0 7 0 4 1 0 5 3 8 3 3 7 8 7 5 a − 2 0 0 7 0 4 3 6 5 7 5 4 9 8 6 2 5
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , a a a , 9 a + 6 9 a + 6 9 a + 6 , 4 a − 20 ] 4 a - 20\bigr] 4 a − 2 0 ]
y 2 + x y + a y = x 3 + ( − a + 1 ) x 2 + ( 9 a + 6 ) x + 4 a − 20 {y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(9a+6\right){x}+4a-20 y 2 + x y + a y = x 3 + ( − a + 1 ) x 2 + ( 9 a + 6 ) x + 4 a − 2 0
28.2-a4
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 5 ⋅ 7 2^{5} \cdot 7 2 5 ⋅ 7
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
7.878754216 7.878754216 7 . 8 7 8 7 5 4 2 1 6
0.330876576
− 831875 112 a − 166375 112 -\frac{831875}{112} a - \frac{166375}{112} − 1 1 2 8 3 1 8 7 5 a − 1 1 2 1 6 6 3 7 5
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , a a a , − a + 1 -a + 1 − a + 1 , − a + 1 ] -a + 1\bigr] − a + 1 ]
y 2 + x y + a y = x 3 + ( − a + 1 ) x 2 + ( − a + 1 ) x − a + 1 {y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a+1\right){x}-a+1 y 2 + x y + a y = x 3 + ( − a + 1 ) x 2 + ( − a + 1 ) x − a + 1
28.2-a5
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 5 ⋅ 7 2^{5} \cdot 7 2 5 ⋅ 7
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
7.878754216 7.878754216 7 . 8 7 8 7 5 4 2 1 6
0.330876576
831875 112 a − 499125 56 \frac{831875}{112} a - \frac{499125}{56} 1 1 2 8 3 1 8 7 5 a − 5 6 4 9 9 1 2 5
[ 1 \bigl[1 [ 1 , a a a , a + 1 a + 1 a + 1 , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + x y + ( a + 1 ) y = x 3 + a x 2 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2} y 2 + x y + ( a + 1 ) y = x 3 + a x 2
28.2-a6
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 4 ⋅ 7 2 2^{4} \cdot 7^{2} 2 4 ⋅ 7 2
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z\oplus\Z/6\Z Z / 2 Z ⊕ Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.1
1 1 1
2 3 2^{3} 2 3
1 1 1
7.878754216 7.878754216 7 . 8 7 8 7 5 4 2 1 6
0.330876576
− 15625 28 -\frac{15625}{28} − 2 8 1 5 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 + x y + y = x 3 − x {y}^2+{x}{y}+{y}={x}^{3}-{x} y 2 + x y + y = x 3 − x
28.2-a7
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 12 ⋅ 7 6 2^{12} \cdot 7^{6} 2 1 2 ⋅ 7 6
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z\oplus\Z/6\Z Z / 2 Z ⊕ Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2Cs , 3Cs.1.1
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
2.626251405 2.626251405 2 . 6 2 6 2 5 1 4 0 5
0.330876576
9938375 21952 \frac{9938375}{21952} 2 1 9 5 2 9 9 3 8 3 7 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , 4 4 4 , − 6 ] -6\bigr] − 6 ]
y 2 + x y + y = x 3 + 4 x − 6 {y}^2+{x}{y}+{y}={x}^{3}+4{x}-6 y 2 + x y + y = x 3 + 4 x − 6
28.2-a8
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 45 ⋅ 7 2^{45} \cdot 7 2 4 5 ⋅ 7
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
0.875417135 0.875417135 0 . 8 7 5 4 1 7 1 3 5
0.330876576
− 70135314719125 481036337152 a + 179276652423375 240518168576 -\frac{70135314719125}{481036337152} a + \frac{179276652423375}{240518168576} − 4 8 1 0 3 6 3 3 7 1 5 2 7 0 1 3 5 3 1 4 7 1 9 1 2 5 a + 2 4 0 5 1 8 1 6 8 5 7 6 1 7 9 2 7 6 6 5 2 4 2 3 3 7 5
[ 1 \bigl[1 [ 1 , a a a , a + 1 a + 1 a + 1 , 30 a − 40 30 a - 40 3 0 a − 4 0 , − 30 a − 154 ] -30 a - 154\bigr] − 3 0 a − 1 5 4 ]
y 2 + x y + ( a + 1 ) y = x 3 + a x 2 + ( 30 a − 40 ) x − 30 a − 154 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(30a-40\right){x}-30a-154 y 2 + x y + ( a + 1 ) y = x 3 + a x 2 + ( 3 0 a − 4 0 ) x − 3 0 a − 1 5 4
28.2-a9
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 45 ⋅ 7 2^{45} \cdot 7 2 4 5 ⋅ 7
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
0.875417135 0.875417135 0 . 8 7 5 4 1 7 1 3 5
0.330876576
70135314719125 481036337152 a + 288417990127625 481036337152 \frac{70135314719125}{481036337152} a + \frac{288417990127625}{481036337152} 4 8 1 0 3 6 3 3 7 1 5 2 7 0 1 3 5 3 1 4 7 1 9 1 2 5 a + 4 8 1 0 3 6 3 3 7 1 5 2 2 8 8 4 1 7 9 9 0 1 2 7 6 2 5
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , a a a , − 31 a − 9 -31 a - 9 − 3 1 a − 9 , 29 a − 183 ] 29 a - 183\bigr] 2 9 a − 1 8 3 ]
y 2 + x y + a y = x 3 + ( − a + 1 ) x 2 + ( − 31 a − 9 ) x + 29 a − 183 {y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-31a-9\right){x}+29a-183 y 2 + x y + a y = x 3 + ( − a + 1 ) x 2 + ( − 3 1 a − 9 ) x + 2 9 a − 1 8 3
28.2-a10
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 6 ⋅ 7 12 2^{6} \cdot 7^{12} 2 6 ⋅ 7 1 2
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
1.313125702 1.313125702 1 . 3 1 3 1 2 5 7 0 2
0.330876576
4956477625 941192 \frac{4956477625}{941192} 9 4 1 1 9 2 4 9 5 6 4 7 7 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 36 -36 − 3 6 , − 70 ] -70\bigr] − 7 0 ]
y 2 + x y + y = x 3 − 36 x − 70 {y}^2+{x}{y}+{y}={x}^{3}-36{x}-70 y 2 + x y + y = x 3 − 3 6 x − 7 0
28.2-a11
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 2 ⋅ 7 4 2^{2} \cdot 7^{4} 2 2 ⋅ 7 4
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2^{2} 2 2
1 1 1
3.939377108 3.939377108 3 . 9 3 9 3 7 7 1 0 8
0.330876576
128787625 98 \frac{128787625}{98} 9 8 1 2 8 7 8 7 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 11 -11 − 1 1 , 12 ] 12\bigr] 1 2 ]
y 2 + x y + y = x 3 − 11 x + 12 {y}^2+{x}{y}+{y}={x}^{3}-11{x}+12 y 2 + x y + y = x 3 − 1 1 x + 1 2
28.2-a12
28.2-a
12 12 1 2
36 36 3 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
28.2
2 2 ⋅ 7 2^{2} \cdot 7 2 2 ⋅ 7
2 18 ⋅ 7 4 2^{18} \cdot 7^{4} 2 1 8 ⋅ 7 4
0.54385 0.54385 0 . 5 4 3 8 5
( a ) , ( − a + 1 ) , ( − 2 a + 1 ) (a), (-a+1), (-2a+1) ( a ) , ( − a + 1 ) , ( − 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
0.437708567 0.437708567 0 . 4 3 7 7 0 8 5 6 7
0.330876576
2251439055699625 25088 \frac{2251439055699625}{25088} 2 5 0 8 8 2 2 5 1 4 3 9 0 5 5 6 9 9 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 2731 -2731 − 2 7 3 1 , − 55146 ] -55146\bigr] − 5 5 1 4 6 ]
y 2 + x y + y = x 3 − 2731 x − 55146 {y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146 y 2 + x y + y = x 3 − 2 7 3 1 x − 5 5 1 4 6
44.3-a1
44.3-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.3
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 10 ⋅ 1 1 3 2^{10} \cdot 11^{3} 2 1 0 ⋅ 1 1 3
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( − 2 a + 3 ) (a), (-a+1), (-2a+3) ( a ) , ( − a + 1 ) , ( − 2 a + 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 3 2^{3} 2 3
1 1 1
1.680888225 1.680888225 1 . 6 8 0 8 8 8 2 2 5
0.635316032
2775668240489 85184 a − 3929396676037 42592 \frac{2775668240489}{85184} a - \frac{3929396676037}{42592} 8 5 1 8 4 2 7 7 5 6 6 8 2 4 0 4 8 9 a − 4 2 5 9 2 3 9 2 9 3 9 6 6 7 6 0 3 7
[ 1 \bigl[1 [ 1 , a a a , 0 0 0 , − 55 a + 91 -55 a + 91 − 5 5 a + 9 1 , 87 a + 359 ] 87 a + 359\bigr] 8 7 a + 3 5 9 ]
y 2 + x y = x 3 + a x 2 + ( − 55 a + 91 ) x + 87 a + 359 {y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-55a+91\right){x}+87a+359 y 2 + x y = x 3 + a x 2 + ( − 5 5 a + 9 1 ) x + 8 7 a + 3 5 9
44.3-a2
44.3-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.3
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 7 ⋅ 1 1 12 2^{7} \cdot 11^{12} 2 7 ⋅ 1 1 1 2
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( − 2 a + 3 ) (a), (-a+1), (-2a+3) ( a ) , ( − a + 1 ) , ( − 2 a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
0.840444112 0.840444112 0 . 8 4 0 4 4 4 1 1 2
0.635316032
− 41728910180660407 200859416110144 a − 5044929390482523 100429708055072 -\frac{41728910180660407}{200859416110144} a - \frac{5044929390482523}{100429708055072} − 2 0 0 8 5 9 4 1 6 1 1 0 1 4 4 4 1 7 2 8 9 1 0 1 8 0 6 6 0 4 0 7 a − 1 0 0 4 2 9 7 0 8 0 5 5 0 7 2 5 0 4 4 9 2 9 3 9 0 4 8 2 5 2 3
[ 1 \bigl[1 [ 1 , 1 1 1 , a + 1 a + 1 a + 1 , − 4 a + 40 -4 a + 40 − 4 a + 4 0 , 135 a + 83 ] 135 a + 83\bigr] 1 3 5 a + 8 3 ]
y 2 + x y + ( a + 1 ) y = x 3 + x 2 + ( − 4 a + 40 ) x + 135 a + 83 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-4a+40\right){x}+135a+83 y 2 + x y + ( a + 1 ) y = x 3 + x 2 + ( − 4 a + 4 0 ) x + 1 3 5 a + 8 3
44.3-a3
44.3-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.3
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 14 ⋅ 11 2^{14} \cdot 11 2 1 4 ⋅ 1 1
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( − 2 a + 3 ) (a), (-a+1), (-2a+3) ( a ) , ( − a + 1 ) , ( − 2 a + 3 )
0
Z / 12 Z \Z/12\Z Z / 1 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
5.042664675 5.042664675 5 . 0 4 2 6 6 4 6 7 5
0.635316032
2222449 45056 a + 42043605 45056 \frac{2222449}{45056} a + \frac{42043605}{45056} 4 5 0 5 6 2 2 2 2 4 4 9 a + 4 5 0 5 6 4 2 0 4 3 6 0 5
[ 1 \bigl[1 [ 1 , a a a , 0 0 0 , 1 1 1 , 1 ] 1\bigr] 1 ]
y 2 + x y = x 3 + a x 2 + x + 1 {y}^2+{x}{y}={x}^{3}+a{x}^{2}+{x}+1 y 2 + x y = x 3 + a x 2 + x + 1
44.3-a4
44.3-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.3
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 25 ⋅ 1 1 3 2^{25} \cdot 11^{3} 2 2 5 ⋅ 1 1 3
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( − 2 a + 3 ) (a), (-a+1), (-2a+3) ( a ) , ( − a + 1 ) , ( − 2 a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
1.680888225 1.680888225 1 . 6 8 0 8 8 8 2 2 5
0.635316032
− 74168468086089 22330474496 a + 45400743717419 11165237248 -\frac{74168468086089}{22330474496} a + \frac{45400743717419}{11165237248} − 2 2 3 3 0 4 7 4 4 9 6 7 4 1 6 8 4 6 8 0 8 6 0 8 9 a + 1 1 1 6 5 2 3 7 2 4 8 4 5 4 0 0 7 4 3 7 1 7 4 1 9
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , 1 1 1 , 14 a − 17 14 a - 17 1 4 a − 1 7 , − 19 a + 5 ] -19 a + 5\bigr] − 1 9 a + 5 ]
y 2 + x y + y = x 3 + ( − a + 1 ) x 2 + ( 14 a − 17 ) x − 19 a + 5 {y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(14a-17\right){x}-19a+5 y 2 + x y + y = x 3 + ( − a + 1 ) x 2 + ( 1 4 a − 1 7 ) x − 1 9 a + 5
44.3-a5
44.3-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.3
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 10 ⋅ 1 1 2 2^{10} \cdot 11^{2} 2 1 0 ⋅ 1 1 2
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( − 2 a + 3 ) (a), (-a+1), (-2a+3) ( a ) , ( − a + 1 ) , ( − 2 a + 3 )
0
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z\oplus\Z/6\Z Z / 2 Z ⊕ Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.1
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
5.042664675 5.042664675 5 . 0 4 2 6 6 4 6 7 5
0.635316032
− 998361 7744 a + 23448551 7744 -\frac{998361}{7744} a + \frac{23448551}{7744} − 7 7 4 4 9 9 8 3 6 1 a + 7 7 4 4 2 3 4 4 8 5 5 1
[ 1 \bigl[1 [ 1 , 1 1 1 , a + 1 a + 1 a + 1 , a a a , 1 ] 1\bigr] 1 ]
y 2 + x y + ( a + 1 ) y = x 3 + x 2 + a x + 1 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+a{x}+1 y 2 + x y + ( a + 1 ) y = x 3 + x 2 + a x + 1
44.3-a6
44.3-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.3
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 14 ⋅ 1 1 6 2^{14} \cdot 11^{6} 2 1 4 ⋅ 1 1 6
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( − 2 a + 3 ) (a), (-a+1), (-2a+3) ( a ) , ( − a + 1 ) , ( − 2 a + 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.2
1 1 1
2 3 2^{3} 2 3
1 1 1
1.680888225 1.680888225 1 . 6 8 0 8 8 8 2 2 5
0.635316032
49453830610989 7256313856 a − 991801247255 3628156928 \frac{49453830610989}{7256313856} a - \frac{991801247255}{3628156928} 7 2 5 6 3 1 3 8 5 6 4 9 4 5 3 8 3 0 6 1 0 9 8 9 a − 3 6 2 8 1 5 6 9 2 8 9 9 1 8 0 1 2 4 7 2 5 5
[ 1 \bigl[1 [ 1 , 1 1 1 , a + 1 a + 1 a + 1 , − 14 a − 10 -14 a - 10 − 1 4 a − 1 0 , 27 a − 9 ] 27 a - 9\bigr] 2 7 a − 9 ]
y 2 + x y + ( a + 1 ) y = x 3 + x 2 + ( − 14 a − 10 ) x + 27 a − 9 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-14a-10\right){x}+27a-9 y 2 + x y + ( a + 1 ) y = x 3 + x 2 + ( − 1 4 a − 1 0 ) x + 2 7 a − 9
44.3-a7
44.3-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.3
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 11 ⋅ 11 2^{11} \cdot 11 2 1 1 ⋅ 1 1
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( − 2 a + 3 ) (a), (-a+1), (-2a+3) ( a ) , ( − a + 1 ) , ( − 2 a + 3 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
5.042664675 5.042664675 5 . 0 4 2 6 6 4 6 7 5
0.635316032
7153263 2816 a + 40910099 1408 \frac{7153263}{2816} a + \frac{40910099}{1408} 2 8 1 6 7 1 5 3 2 6 3 a + 1 4 0 8 4 0 9 1 0 0 9 9
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , 1 1 1 , − a + 3 -a + 3 − a + 3 , − 3 a + 1 ] -3 a + 1\bigr] − 3 a + 1 ]
y 2 + x y + y = x 3 + ( − a + 1 ) x 2 + ( − a + 3 ) x − 3 a + 1 {y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a+3\right){x}-3a+1 y 2 + x y + y = x 3 + ( − a + 1 ) x 2 + ( − a + 3 ) x − 3 a + 1
44.3-a8
44.3-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.3
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 5 ⋅ 1 1 4 2^{5} \cdot 11^{4} 2 5 ⋅ 1 1 4
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( − 2 a + 3 ) (a), (-a+1), (-2a+3) ( a ) , ( − a + 1 ) , ( − 2 a + 3 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
2.521332337 2.521332337 2 . 5 2 1 3 3 2 3 3 7
0.635316032
− 67333244623 117128 a + 557731279327 117128 -\frac{67333244623}{117128} a + \frac{557731279327}{117128} − 1 1 7 1 2 8 6 7 3 3 3 2 4 4 6 2 3 a + 1 1 7 1 2 8 5 5 7 7 3 1 2 7 9 3 2 7
[ 1 \bigl[1 [ 1 , 1 1 1 , a + 1 a + 1 a + 1 , 21 a 21 a 2 1 a , 20 a + 57 ] 20 a + 57\bigr] 2 0 a + 5 7 ]
y 2 + x y + ( a + 1 ) y = x 3 + x 2 + 21 a x + 20 a + 57 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+21a{x}+20a+57 y 2 + x y + ( a + 1 ) y = x 3 + x 2 + 2 1 a x + 2 0 a + 5 7
44.4-a1
44.4-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.4
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 10 ⋅ 1 1 3 2^{10} \cdot 11^{3} 2 1 0 ⋅ 1 1 3
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( 2 a + 1 ) (a), (-a+1), (2a+1) ( a ) , ( − a + 1 ) , ( 2 a + 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 3 2^{3} 2 3
1 1 1
1.680888225 1.680888225 1 . 6 8 0 8 8 8 2 2 5
0.635316032
− 2775668240489 85184 a − 5083125111585 85184 -\frac{2775668240489}{85184} a - \frac{5083125111585}{85184} − 8 5 1 8 4 2 7 7 5 6 6 8 2 4 0 4 8 9 a − 8 5 1 8 4 5 0 8 3 1 2 5 1 1 1 5 8 5
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , 0 0 0 , 55 a + 36 55 a + 36 5 5 a + 3 6 , − 87 a + 446 ] -87 a + 446\bigr] − 8 7 a + 4 4 6 ]
y 2 + x y = x 3 + ( − a + 1 ) x 2 + ( 55 a + 36 ) x − 87 a + 446 {y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(55a+36\right){x}-87a+446 y 2 + x y = x 3 + ( − a + 1 ) x 2 + ( 5 5 a + 3 6 ) x − 8 7 a + 4 4 6
44.4-a2
44.4-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.4
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 7 ⋅ 1 1 12 2^{7} \cdot 11^{12} 2 7 ⋅ 1 1 1 2
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( 2 a + 1 ) (a), (-a+1), (2a+1) ( a ) , ( − a + 1 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
0.840444112 0.840444112 0 . 8 4 0 4 4 4 1 1 2
0.635316032
41728910180660407 200859416110144 a − 51818768961625453 200859416110144 \frac{41728910180660407}{200859416110144} a - \frac{51818768961625453}{200859416110144} 2 0 0 8 5 9 4 1 6 1 1 0 1 4 4 4 1 7 2 8 9 1 0 1 8 0 6 6 0 4 0 7 a − 2 0 0 8 5 9 4 1 6 1 1 0 1 4 4 5 1 8 1 8 7 6 8 9 6 1 6 2 5 4 5 3
[ 1 \bigl[1 [ 1 , 1 1 1 , a a a , 3 a + 37 3 a + 37 3 a + 3 7 , − 136 a + 219 ] -136 a + 219\bigr] − 1 3 6 a + 2 1 9 ]
y 2 + x y + a y = x 3 + x 2 + ( 3 a + 37 ) x − 136 a + 219 {y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(3a+37\right){x}-136a+219 y 2 + x y + a y = x 3 + x 2 + ( 3 a + 3 7 ) x − 1 3 6 a + 2 1 9
44.4-a3
44.4-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.4
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 14 ⋅ 11 2^{14} \cdot 11 2 1 4 ⋅ 1 1
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( 2 a + 1 ) (a), (-a+1), (2a+1) ( a ) , ( − a + 1 ) , ( 2 a + 1 )
0
Z / 12 Z \Z/12\Z Z / 1 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
5.042664675 5.042664675 5 . 0 4 2 6 6 4 6 7 5
0.635316032
− 2222449 45056 a + 22133027 22528 -\frac{2222449}{45056} a + \frac{22133027}{22528} − 4 5 0 5 6 2 2 2 2 4 4 9 a + 2 2 5 2 8 2 2 1 3 3 0 2 7
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , 0 0 0 , 1 1 1 , 1 ] 1\bigr] 1 ]
y 2 + x y = x 3 + ( − a + 1 ) x 2 + x + 1 {y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+{x}+1 y 2 + x y = x 3 + ( − a + 1 ) x 2 + x + 1
44.4-a4
44.4-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.4
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 25 ⋅ 1 1 3 2^{25} \cdot 11^{3} 2 2 5 ⋅ 1 1 3
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( 2 a + 1 ) (a), (-a+1), (2a+1) ( a ) , ( − a + 1 ) , ( 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
1.680888225 1.680888225 1 . 6 8 0 8 8 8 2 2 5
0.635316032
74168468086089 22330474496 a + 16633019348749 22330474496 \frac{74168468086089}{22330474496} a + \frac{16633019348749}{22330474496} 2 2 3 3 0 4 7 4 4 9 6 7 4 1 6 8 4 6 8 0 8 6 0 8 9 a + 2 2 3 3 0 4 7 4 4 9 6 1 6 6 3 3 0 1 9 3 4 8 7 4 9
[ 1 \bigl[1 [ 1 , a a a , 1 1 1 , − 14 a − 3 -14 a - 3 − 1 4 a − 3 , 19 a − 14 ] 19 a - 14\bigr] 1 9 a − 1 4 ]
y 2 + x y + y = x 3 + a x 2 + ( − 14 a − 3 ) x + 19 a − 14 {y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-14a-3\right){x}+19a-14 y 2 + x y + y = x 3 + a x 2 + ( − 1 4 a − 3 ) x + 1 9 a − 1 4
44.4-a5
44.4-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.4
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 10 ⋅ 1 1 2 2^{10} \cdot 11^{2} 2 1 0 ⋅ 1 1 2
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( 2 a + 1 ) (a), (-a+1), (2a+1) ( a ) , ( − a + 1 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z\oplus\Z/6\Z Z / 2 Z ⊕ Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.1
1 1 1
2 3 ⋅ 3 2^{3} \cdot 3 2 3 ⋅ 3
1 1 1
5.042664675 5.042664675 5 . 0 4 2 6 6 4 6 7 5
0.635316032
998361 7744 a + 11225095 3872 \frac{998361}{7744} a + \frac{11225095}{3872} 7 7 4 4 9 9 8 3 6 1 a + 3 8 7 2 1 1 2 2 5 0 9 5
[ 1 \bigl[1 [ 1 , 1 1 1 , a a a , − 2 a + 2 -2 a + 2 − 2 a + 2 , − a + 2 ] -a + 2\bigr] − a + 2 ]
y 2 + x y + a y = x 3 + x 2 + ( − 2 a + 2 ) x − a + 2 {y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-2a+2\right){x}-a+2 y 2 + x y + a y = x 3 + x 2 + ( − 2 a + 2 ) x − a + 2
44.4-a6
44.4-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.4
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 14 ⋅ 1 1 6 2^{14} \cdot 11^{6} 2 1 4 ⋅ 1 1 6
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( 2 a + 1 ) (a), (-a+1), (2a+1) ( a ) , ( − a + 1 ) , ( 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2Cs , 3B.1.2
1 1 1
2 3 2^{3} 2 3
1 1 1
1.680888225 1.680888225 1 . 6 8 0 8 8 8 2 2 5
0.635316032
− 49453830610989 7256313856 a + 47470228116479 7256313856 -\frac{49453830610989}{7256313856} a + \frac{47470228116479}{7256313856} − 7 2 5 6 3 1 3 8 5 6 4 9 4 5 3 8 3 0 6 1 0 9 8 9 a + 7 2 5 6 3 1 3 8 5 6 4 7 4 7 0 2 2 8 1 1 6 4 7 9
[ 1 \bigl[1 [ 1 , 1 1 1 , a a a , 13 a − 23 13 a - 23 1 3 a − 2 3 , − 28 a + 19 ] -28 a + 19\bigr] − 2 8 a + 1 9 ]
y 2 + x y + a y = x 3 + x 2 + ( 13 a − 23 ) x − 28 a + 19 {y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(13a-23\right){x}-28a+19 y 2 + x y + a y = x 3 + x 2 + ( 1 3 a − 2 3 ) x − 2 8 a + 1 9
44.4-a7
44.4-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.4
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 11 ⋅ 11 2^{11} \cdot 11 2 1 1 ⋅ 1 1
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( 2 a + 1 ) (a), (-a+1), (2a+1) ( a ) , ( − a + 1 ) , ( 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
5.042664675 5.042664675 5 . 0 4 2 6 6 4 6 7 5
0.635316032
− 7153263 2816 a + 88973461 2816 -\frac{7153263}{2816} a + \frac{88973461}{2816} − 2 8 1 6 7 1 5 3 2 6 3 a + 2 8 1 6 8 8 9 7 3 4 6 1
[ 1 \bigl[1 [ 1 , a a a , 1 1 1 , a + 2 a + 2 a + 2 , 3 a − 2 ] 3 a - 2\bigr] 3 a − 2 ]
y 2 + x y + y = x 3 + a x 2 + ( a + 2 ) x + 3 a − 2 {y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(a+2\right){x}+3a-2 y 2 + x y + y = x 3 + a x 2 + ( a + 2 ) x + 3 a − 2
44.4-a8
44.4-a
8 8 8
12 12 1 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
44.4
2 2 ⋅ 11 2^{2} \cdot 11 2 2 ⋅ 1 1
2 5 ⋅ 1 1 4 2^{5} \cdot 11^{4} 2 5 ⋅ 1 1 4
0.60891 0.60891 0 . 6 0 8 9 1
( a ) , ( − a + 1 ) , ( 2 a + 1 ) (a), (-a+1), (2a+1) ( a ) , ( − a + 1 ) , ( 2 a + 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
2.521332337 2.521332337 2 . 5 2 1 3 3 2 3 3 7
0.635316032
67333244623 117128 a + 61299754338 14641 \frac{67333244623}{117128} a + \frac{61299754338}{14641} 1 1 7 1 2 8 6 7 3 3 3 2 4 4 6 2 3 a + 1 4 6 4 1 6 1 2 9 9 7 5 4 3 3 8
[ 1 \bigl[1 [ 1 , 1 1 1 , a a a , − 22 a + 22 -22 a + 22 − 2 2 a + 2 2 , − 21 a + 78 ] -21 a + 78\bigr] − 2 1 a + 7 8 ]
y 2 + x y + a y = x 3 + x 2 + ( − 22 a + 22 ) x − 21 a + 78 {y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-22a+22\right){x}-21a+78 y 2 + x y + a y = x 3 + x 2 + ( − 2 2 a + 2 2 ) x − 2 1 a + 7 8
46.2-a1
46.2-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.2
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 2 ⋅ 23 2^{2} \cdot 23 2 2 ⋅ 2 3
0.61571 0.61571 0 . 6 1 5 7 1
( a ) , ( 2 a + 3 ) (a), (2a+3) ( a ) , ( 2 a + 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
6.500075531 6.500075531 6 . 5 0 0 0 7 5 5 3 1
0.614199405
− 13982353 92 a − 23126489 92 -\frac{13982353}{92} a - \frac{23126489}{92} − 9 2 1 3 9 8 2 3 5 3 a − 9 2 2 3 1 2 6 4 8 9
[ 1 \bigl[1 [ 1 , − a − 1 -a - 1 − a − 1 , a + 1 a + 1 a + 1 , − 4 -4 − 4 , − 1 ] -1\bigr] − 1 ]
y 2 + x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 − 4 x − 1 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}-4{x}-1 y 2 + x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 − 4 x − 1
46.2-a2
46.2-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.2
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 2 ⋅ 2 3 4 2^{2} \cdot 23^{4} 2 2 ⋅ 2 3 4
0.61571 0.61571 0 . 6 1 5 7 1
( a ) , ( 2 a + 3 ) (a), (2a+3) ( a ) , ( 2 a + 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
3.250037765 3.250037765 3 . 2 5 0 0 3 7 7 6 5
0.614199405
77942691519 1119364 a − 145858368769 1119364 \frac{77942691519}{1119364} a - \frac{145858368769}{1119364} 1 1 1 9 3 6 4 7 7 9 4 2 6 9 1 5 1 9 a − 1 1 1 9 3 6 4 1 4 5 8 5 8 3 6 8 7 6 9
[ 1 \bigl[1 [ 1 , − a -a − a , a a a , − 6 a + 10 -6 a + 10 − 6 a + 1 0 , 2 a + 8 ] 2 a + 8\bigr] 2 a + 8 ]
y 2 + x y + a y = x 3 − a x 2 + ( − 6 a + 10 ) x + 2 a + 8 {y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-6a+10\right){x}+2a+8 y 2 + x y + a y = x 3 − a x 2 + ( − 6 a + 1 0 ) x + 2 a + 8
46.2-a3
46.2-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.2
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 ⋅ 2 3 8 2 \cdot 23^{8} 2 ⋅ 2 3 8
0.61571 0.61571 0 . 6 1 5 7 1
( a ) , ( 2 a + 3 ) (a), (2a+3) ( a ) , ( 2 a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
1.625018882 1.625018882 1 . 6 2 5 0 1 8 8 8 2
0.614199405
5221695638593 156621970562 a + 45422616717183 156621970562 \frac{5221695638593}{156621970562} a + \frac{45422616717183}{156621970562} 1 5 6 6 2 1 9 7 0 5 6 2 5 2 2 1 6 9 5 6 3 8 5 9 3 a + 1 5 6 6 2 1 9 7 0 5 6 2 4 5 4 2 2 6 1 6 7 1 7 1 8 3
[ 1 \bigl[1 [ 1 , − a -a − a , a a a , − a + 10 -a + 10 − a + 1 0 , − 8 a + 30 ] -8 a + 30\bigr] − 8 a + 3 0 ]
y 2 + x y + a y = x 3 − a x 2 + ( − a + 10 ) x − 8 a + 30 {y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-a+10\right){x}-8a+30 y 2 + x y + a y = x 3 − a x 2 + ( − a + 1 0 ) x − 8 a + 3 0
46.2-a4
46.2-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.2
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 4 ⋅ 2 3 2 2^{4} \cdot 23^{2} 2 4 ⋅ 2 3 2
0.61571 0.61571 0 . 6 1 5 7 1
( a ) , ( 2 a + 3 ) (a), (2a+3) ( a ) , ( 2 a + 3 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
6.500075531 6.500075531 6 . 5 0 0 0 7 5 5 3 1
0.614199405
− 1695309 8464 a + 8874095 8464 -\frac{1695309}{8464} a + \frac{8874095}{8464} − 8 4 6 4 1 6 9 5 3 0 9 a + 8 4 6 4 8 8 7 4 0 9 5
[ 1 \bigl[1 [ 1 , − a -a − a , a a a , − a -a − a , 0 ] 0\bigr] 0 ]
y 2 + x y + a y = x 3 − a x 2 − a x {y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}-a{x} y 2 + x y + a y = x 3 − a x 2 − a x
46.2-a5
46.2-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.2
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 8 ⋅ 23 2^{8} \cdot 23 2 8 ⋅ 2 3
0.61571 0.61571 0 . 6 1 5 7 1
( a ) , ( 2 a + 3 ) (a), (2a+3) ( a ) , ( 2 a + 3 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
6.500075531 6.500075531 6 . 5 0 0 0 7 5 5 3 1
0.614199405
2993221 5888 a + 15291513 5888 \frac{2993221}{5888} a + \frac{15291513}{5888} 5 8 8 8 2 9 9 3 2 2 1 a + 5 8 8 8 1 5 2 9 1 5 1 3
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , − a − 2 -a - 2 − a − 2 , − a + 1 ] -a + 1\bigr] − a + 1 ]
y 2 + x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − a − 2 ) x − a + 1 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a-2\right){x}-a+1 y 2 + x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − a − 2 ) x − a + 1
46.2-a6
46.2-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.2
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 ⋅ 2 3 2 2 \cdot 23^{2} 2 ⋅ 2 3 2
0.61571 0.61571 0 . 6 1 5 7 1
( a ) , ( 2 a + 3 ) (a), (2a+3) ( a ) , ( 2 a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
1.625018882 1.625018882 1 . 6 2 5 0 1 8 8 8 2
0.614199405
− 14178949136401 1058 a + 7909975811569 1058 -\frac{14178949136401}{1058} a + \frac{7909975811569}{1058} − 1 0 5 8 1 4 1 7 8 9 4 9 1 3 6 4 0 1 a + 1 0 5 8 7 9 0 9 9 7 5 8 1 1 5 6 9
[ 1 \bigl[1 [ 1 , − a -a − a , a a a , − 91 a + 170 -91 a + 170 − 9 1 a + 1 7 0 , 240 a + 618 ] 240 a + 618\bigr] 2 4 0 a + 6 1 8 ]
y 2 + x y + a y = x 3 − a x 2 + ( − 91 a + 170 ) x + 240 a + 618 {y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-91a+170\right){x}+240a+618 y 2 + x y + a y = x 3 − a x 2 + ( − 9 1 a + 1 7 0 ) x + 2 4 0 a + 6 1 8
46.3-a1
46.3-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.3
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 2 ⋅ 23 2^{2} \cdot 23 2 2 ⋅ 2 3
0.61571 0.61571 0 . 6 1 5 7 1
( − a + 1 ) , ( − 2 a + 5 ) (-a+1), (-2a+5) ( − a + 1 ) , ( − 2 a + 5 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
6.500075531 6.500075531 6 . 5 0 0 0 7 5 5 3 1
0.614199405
13982353 92 a − 18554421 46 \frac{13982353}{92} a - \frac{18554421}{46} 9 2 1 3 9 8 2 3 5 3 a − 4 6 1 8 5 5 4 4 2 1
[ 1 \bigl[1 [ 1 , a + 1 a + 1 a + 1 , a + 1 a + 1 a + 1 , a − 4 a - 4 a − 4 , − a − 4 ] -a - 4\bigr] − a − 4 ]
y 2 + x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( a − 4 ) x − a − 4 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-4\right){x}-a-4 y 2 + x y + ( a + 1 ) y = x 3 + ( a + 1 ) x 2 + ( a − 4 ) x − a − 4
46.3-a2
46.3-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.3
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 2 ⋅ 2 3 4 2^{2} \cdot 23^{4} 2 2 ⋅ 2 3 4
0.61571 0.61571 0 . 6 1 5 7 1
( − a + 1 ) , ( − 2 a + 5 ) (-a+1), (-2a+5) ( − a + 1 ) , ( − 2 a + 5 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
3.250037765 3.250037765 3 . 2 5 0 0 3 7 7 6 5
0.614199405
− 77942691519 1119364 a − 33957838625 559682 -\frac{77942691519}{1119364} a - \frac{33957838625}{559682} − 1 1 1 9 3 6 4 7 7 9 4 2 6 9 1 5 1 9 a − 5 5 9 6 8 2 3 3 9 5 7 8 3 8 6 2 5
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , 5 a + 4 5 a + 4 5 a + 4 , − 3 a + 10 ] -3 a + 10\bigr] − 3 a + 1 0 ]
y 2 + x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( 5 a + 4 ) x − 3 a + 10 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5a+4\right){x}-3a+10 y 2 + x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( 5 a + 4 ) x − 3 a + 1 0
46.3-a3
46.3-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.3
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 ⋅ 2 3 8 2 \cdot 23^{8} 2 ⋅ 2 3 8
0.61571 0.61571 0 . 6 1 5 7 1
( − a + 1 ) , ( − 2 a + 5 ) (-a+1), (-2a+5) ( − a + 1 ) , ( − 2 a + 5 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
1.625018882 1.625018882 1 . 6 2 5 0 1 8 8 8 2
0.614199405
− 5221695638593 156621970562 a + 25322156177888 78310985281 -\frac{5221695638593}{156621970562} a + \frac{25322156177888}{78310985281} − 1 5 6 6 2 1 9 7 0 5 6 2 5 2 2 1 6 9 5 6 3 8 5 9 3 a + 7 8 3 1 0 9 8 5 2 8 1 2 5 3 2 2 1 5 6 1 7 7 8 8 8
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , 9 9 9 , 7 a + 22 ] 7 a + 22\bigr] 7 a + 2 2 ]
y 2 + x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + 9 x + 7 a + 22 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+9{x}+7a+22 y 2 + x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + 9 x + 7 a + 2 2
46.3-a4
46.3-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.3
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 4 ⋅ 2 3 2 2^{4} \cdot 23^{2} 2 4 ⋅ 2 3 2
0.61571 0.61571 0 . 6 1 5 7 1
( − a + 1 ) , ( − 2 a + 5 ) (-a+1), (-2a+5) ( − a + 1 ) , ( − 2 a + 5 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
6.500075531 6.500075531 6 . 5 0 0 0 7 5 5 3 1
0.614199405
1695309 8464 a + 3589393 4232 \frac{1695309}{8464} a + \frac{3589393}{4232} 8 4 6 4 1 6 9 5 3 0 9 a + 4 2 3 2 3 5 8 9 3 9 3
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , − 1 -1 − 1 , − a ] -a\bigr] − a ]
y 2 + x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 − x − a {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}-{x}-a y 2 + x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 − x − a
46.3-a5
46.3-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.3
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 8 ⋅ 23 2^{8} \cdot 23 2 8 ⋅ 2 3
0.61571 0.61571 0 . 6 1 5 7 1
( − a + 1 ) , ( − 2 a + 5 ) (-a+1), (-2a+5) ( − a + 1 ) , ( − 2 a + 5 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
6.500075531 6.500075531 6 . 5 0 0 0 7 5 5 3 1
0.614199405
− 2993221 5888 a + 9142367 2944 -\frac{2993221}{5888} a + \frac{9142367}{2944} − 5 8 8 8 2 9 9 3 2 2 1 a + 2 9 4 4 9 1 4 2 3 6 7
[ 1 \bigl[1 [ 1 , − a -a − a , a a a , − 2 -2 − 2 , 1 ] 1\bigr] 1 ]
y 2 + x y + a y = x 3 − a x 2 − 2 x + 1 {y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}-2{x}+1 y 2 + x y + a y = x 3 − a x 2 − 2 x + 1
46.3-a6
46.3-a
6 6 6
8 8 8
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
46.3
2 ⋅ 23 2 \cdot 23 2 ⋅ 2 3
2 ⋅ 2 3 2 2 \cdot 23^{2} 2 ⋅ 2 3 2
0.61571 0.61571 0 . 6 1 5 7 1
( − a + 1 ) , ( − 2 a + 5 ) (-a+1), (-2a+5) ( − a + 1 ) , ( − 2 a + 5 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
1.625018882 1.625018882 1 . 6 2 5 0 1 8 8 8 2
0.614199405
14178949136401 1058 a − 3134486662416 529 \frac{14178949136401}{1058} a - \frac{3134486662416}{529} 1 0 5 8 1 4 1 7 8 9 4 9 1 3 6 4 0 1 a − 5 2 9 3 1 3 4 4 8 6 6 6 2 4 1 6
[ 1 \bigl[1 [ 1 , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , 90 a + 79 90 a + 79 9 0 a + 7 9 , − 241 a + 858 ] -241 a + 858\bigr] − 2 4 1 a + 8 5 8 ]
y 2 + x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( 90 a + 79 ) x − 241 a + 858 {y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(90a+79\right){x}-241a+858 y 2 + x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( 9 0 a + 7 9 ) x − 2 4 1 a + 8 5 8
49.1-CMa1
49.1-CMa
2 2 2
2 2 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
49.1
7 2 7^{2} 7 2
7 6 7^{6} 7 6
0.62551 0.62551 0 . 6 2 5 5 1
( − 2 a + 1 ) (-2a+1) ( − 2 a + 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
yes \textsf{yes} yes
− 7 -7 − 7
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
✓
7 7 7
7B.1.4[2]
1 1 1
2 2 2^{2} 2 2
1 1 1
4.944504600 4.944504600 4 . 9 4 4 5 0 4 6 0 0
0.934423537
− 3375 -3375 − 3 3 7 5
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 0 0 0 , − 2 -2 − 2 , − 1 ] -1\bigr] − 1 ]
y 2 + x y = x 3 − x 2 − 2 x − 1 {y}^2+{x}{y}={x}^{3}-{x}^{2}-2{x}-1 y 2 + x y = x 3 − x 2 − 2 x − 1
49.1-CMa2
49.1-CMa
2 2 2
2 2 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
49.1
7 2 7^{2} 7 2
7 6 7^{6} 7 6
0.62551 0.62551 0 . 6 2 5 5 1
( − 2 a + 1 ) (-2a+1) ( − 2 a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
yes \textsf{yes} yes
− 28 -28 − 2 8
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
✓
7 7 7
7B.1.4[2]
1 1 1
2 2 2
1 1 1
2.472252300 2.472252300 2 . 4 7 2 2 5 2 3 0 0
0.934423537
16581375 16581375 1 6 5 8 1 3 7 5
[ 1 \bigl[1 [ 1 , − 1 -1 − 1 , 0 0 0 , − 37 -37 − 3 7 , − 78 ] -78\bigr] − 7 8 ]
y 2 + x y = x 3 − x 2 − 37 x − 78 {y}^2+{x}{y}={x}^{3}-{x}^{2}-37{x}-78 y 2 + x y = x 3 − x 2 − 3 7 x − 7 8
63.1-a1
63.1-a
8 8 8
16 16 1 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
63.1
3 2 ⋅ 7 3^{2} \cdot 7 3 2 ⋅ 7
3 2 ⋅ 7 16 3^{2} \cdot 7^{16} 3 2 ⋅ 7 1 6
0.66607 0.66607 0 . 6 6 6 0 7
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
0.862076929 0.862076929 0 . 8 6 2 0 7 6 9 2 9
0.325834452
− 4354703137 17294403 -\frac{4354703137}{17294403} − 1 7 2 9 4 4 0 3 4 3 5 4 7 0 3 1 3 7
[ 1 \bigl[1 [ 1 , 0 0 0 , 0 0 0 , − 34 -34 − 3 4 , − 217 ] -217\bigr] − 2 1 7 ]
y 2 + x y = x 3 − 34 x − 217 {y}^2+{x}{y}={x}^{3}-34{x}-217 y 2 + x y = x 3 − 3 4 x − 2 1 7
63.1-a2
63.1-a
8 8 8
16 16 1 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
63.1
3 2 ⋅ 7 3^{2} \cdot 7 3 2 ⋅ 7
3 4 ⋅ 7 2 3^{4} \cdot 7^{2} 3 4 ⋅ 7 2
0.66607 0.66607 0 . 6 6 6 0 7
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
1 1 1
6.896615437 6.896615437 6 . 8 9 6 6 1 5 4 3 7
0.325834452
103823 63 \frac{103823}{63} 6 3 1 0 3 8 2 3
[ 1 \bigl[1 [ 1 , 0 0 0 , 0 0 0 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 + x y = x 3 + x {y}^2+{x}{y}={x}^{3}+{x} y 2 + x y = x 3 + x
63.1-a3
63.1-a
8 8 8
16 16 1 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
63.1
3 2 ⋅ 7 3^{2} \cdot 7 3 2 ⋅ 7
3 8 ⋅ 7 4 3^{8} \cdot 7^{4} 3 8 ⋅ 7 4
0.66607 0.66607 0 . 6 6 6 0 7
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
3.448307718 3.448307718 3 . 4 4 8 3 0 7 7 1 8
0.325834452
7189057 3969 \frac{7189057}{3969} 3 9 6 9 7 1 8 9 0 5 7
[ 1 \bigl[1 [ 1 , 0 0 0 , 0 0 0 , − 4 -4 − 4 , − 1 ] -1\bigr] − 1 ]
y 2 + x y = x 3 − 4 x − 1 {y}^2+{x}{y}={x}^{3}-4{x}-1 y 2 + x y = x 3 − 4 x − 1
63.1-a4
63.1-a
8 8 8
16 16 1 6
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
63.1
3 2 ⋅ 7 3^{2} \cdot 7 3 2 ⋅ 7
3 16 ⋅ 7 2 3^{16} \cdot 7^{2} 3 1 6 ⋅ 7 2
0.66607 0.66607 0 . 6 6 6 0 7
( − 2 a + 1 ) , ( 3 ) (-2a+1), (3) ( − 2 a + 1 ) , ( 3 )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1 1 1
1.724153859 1.724153859 1 . 7 2 4 1 5 3 8 5 9
0.325834452
6570725617 45927 \frac{6570725617}{45927} 4 5 9 2 7 6 5 7 0 7 2 5 6 1 7
[ 1 \bigl[1 [ 1 , 0 0 0 , 0 0 0 , − 39 -39 − 3 9 , 90 ] 90\bigr] 9 0 ]
y 2 + x y = x 3 − 39 x + 90 {y}^2+{x}{y}={x}^{3}-39{x}+90 y 2 + x y = x 3 − 3 9 x + 9 0