| Label |
Base field |
Conductor norm |
Conductor label |
Isogeny class |
Weierstrass coefficients |
| 16.1-CMa1 |
\(\Q(\sqrt{-7}) \)
|
16 |
16.1 |
16.1-CMa |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
| 16.1-CMa2 |
\(\Q(\sqrt{-7}) \)
|
16 |
16.1 |
16.1-CMa |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -15 a + 11\) , \( -7 a + 26\bigr] \) |
| 16.5-CMa1 |
\(\Q(\sqrt{-7}) \)
|
16 |
16.5 |
16.5-CMa |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 0\) , \( 0\bigr] \) |
| 16.5-CMa2 |
\(\Q(\sqrt{-7}) \)
|
16 |
16.5 |
16.5-CMa |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 15 a - 5\) , \( 22 a + 14\bigr] \) |
| 28.2-a1 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) |
| 28.2-a2 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( a\) , \( a + 1\) , \( -10 a + 15\) , \( -5 a - 16\bigr] \) |
| 28.2-a3 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( -a + 1\) , \( a\) , \( 9 a + 6\) , \( 4 a - 20\bigr] \) |
| 28.2-a4 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( -a + 1\) , \( a\) , \( -a + 1\) , \( -a + 1\bigr] \) |
| 28.2-a5 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( a\) , \( a + 1\) , \( 0\) , \( 0\bigr] \) |
| 28.2-a6 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) |
| 28.2-a7 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \) |
| 28.2-a8 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( a\) , \( a + 1\) , \( 30 a - 40\) , \( -30 a - 154\bigr] \) |
| 28.2-a9 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( -a + 1\) , \( a\) , \( -31 a - 9\) , \( 29 a - 183\bigr] \) |
| 28.2-a10 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \) |
| 28.2-a11 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \) |
| 28.2-a12 |
\(\Q(\sqrt{-7}) \)
|
28 |
28.2 |
28.2-a |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) |
| 44.3-a1 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.3 |
44.3-a |
\( \bigl[1\) , \( a\) , \( 0\) , \( -55 a + 91\) , \( 87 a + 359\bigr] \) |
| 44.3-a2 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.3 |
44.3-a |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -4 a + 40\) , \( 135 a + 83\bigr] \) |
| 44.3-a3 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.3 |
44.3-a |
\( \bigl[1\) , \( a\) , \( 0\) , \( 1\) , \( 1\bigr] \) |
| 44.3-a4 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.3 |
44.3-a |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 14 a - 17\) , \( -19 a + 5\bigr] \) |
| 44.3-a5 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.3 |
44.3-a |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( a\) , \( 1\bigr] \) |
| 44.3-a6 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.3 |
44.3-a |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( -14 a - 10\) , \( 27 a - 9\bigr] \) |
| 44.3-a7 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.3 |
44.3-a |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -a + 3\) , \( -3 a + 1\bigr] \) |
| 44.3-a8 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.3 |
44.3-a |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( 21 a\) , \( 20 a + 57\bigr] \) |
| 44.4-a1 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.4 |
44.4-a |
\( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 55 a + 36\) , \( -87 a + 446\bigr] \) |
| 44.4-a2 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.4 |
44.4-a |
\( \bigl[1\) , \( 1\) , \( a\) , \( 3 a + 37\) , \( -136 a + 219\bigr] \) |
| 44.4-a3 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.4 |
44.4-a |
\( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 1\) , \( 1\bigr] \) |
| 44.4-a4 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.4 |
44.4-a |
\( \bigl[1\) , \( a\) , \( 1\) , \( -14 a - 3\) , \( 19 a - 14\bigr] \) |
| 44.4-a5 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.4 |
44.4-a |
\( \bigl[1\) , \( 1\) , \( a\) , \( -2 a + 2\) , \( -a + 2\bigr] \) |
| 44.4-a6 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.4 |
44.4-a |
\( \bigl[1\) , \( 1\) , \( a\) , \( 13 a - 23\) , \( -28 a + 19\bigr] \) |
| 44.4-a7 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.4 |
44.4-a |
\( \bigl[1\) , \( a\) , \( 1\) , \( a + 2\) , \( 3 a - 2\bigr] \) |
| 44.4-a8 |
\(\Q(\sqrt{-7}) \)
|
44 |
44.4 |
44.4-a |
\( \bigl[1\) , \( 1\) , \( a\) , \( -22 a + 22\) , \( -21 a + 78\bigr] \) |
| 46.2-a1 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.2 |
46.2-a |
\( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( -4\) , \( -1\bigr] \) |
| 46.2-a2 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.2 |
46.2-a |
\( \bigl[1\) , \( -a\) , \( a\) , \( -6 a + 10\) , \( 2 a + 8\bigr] \) |
| 46.2-a3 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.2 |
46.2-a |
\( \bigl[1\) , \( -a\) , \( a\) , \( -a + 10\) , \( -8 a + 30\bigr] \) |
| 46.2-a4 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.2 |
46.2-a |
\( \bigl[1\) , \( -a\) , \( a\) , \( -a\) , \( 0\bigr] \) |
| 46.2-a5 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.2 |
46.2-a |
\( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -a - 2\) , \( -a + 1\bigr] \) |
| 46.2-a6 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.2 |
46.2-a |
\( \bigl[1\) , \( -a\) , \( a\) , \( -91 a + 170\) , \( 240 a + 618\bigr] \) |
| 46.3-a1 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.3 |
46.3-a |
\( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( a - 4\) , \( -a - 4\bigr] \) |
| 46.3-a2 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.3 |
46.3-a |
\( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 5 a + 4\) , \( -3 a + 10\bigr] \) |
| 46.3-a3 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.3 |
46.3-a |
\( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 9\) , \( 7 a + 22\bigr] \) |
| 46.3-a4 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.3 |
46.3-a |
\( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -1\) , \( -a\bigr] \) |
| 46.3-a5 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.3 |
46.3-a |
\( \bigl[1\) , \( -a\) , \( a\) , \( -2\) , \( 1\bigr] \) |
| 46.3-a6 |
\(\Q(\sqrt{-7}) \)
|
46 |
46.3 |
46.3-a |
\( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 90 a + 79\) , \( -241 a + 858\bigr] \) |
| 49.1-CMa1 |
\(\Q(\sqrt{-7}) \)
|
49 |
49.1 |
49.1-CMa |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -2\) , \( -1\bigr] \) |
| 49.1-CMa2 |
\(\Q(\sqrt{-7}) \)
|
49 |
49.1 |
49.1-CMa |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -37\) , \( -78\bigr] \) |
| 63.1-a1 |
\(\Q(\sqrt{-7}) \)
|
63 |
63.1 |
63.1-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -34\) , \( -217\bigr] \) |
| 63.1-a2 |
\(\Q(\sqrt{-7}) \)
|
63 |
63.1 |
63.1-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
| 63.1-a3 |
\(\Q(\sqrt{-7}) \)
|
63 |
63.1 |
63.1-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -4\) , \( -1\bigr] \) |
| 63.1-a4 |
\(\Q(\sqrt{-7}) \)
|
63 |
63.1 |
63.1-a |
\( \bigl[1\) , \( 0\) , \( 0\) , \( -39\) , \( 90\bigr] \) |