Base field \(\Q(\sqrt{-7}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(5 a - 1 : -3 : 1\right)$ | $0.18359366116541129774940341895678150361$ | $\infty$ |
| $\left(\frac{17}{4} a - \frac{3}{4} : -\frac{21}{8} a - \frac{1}{8} : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((-132a+66)\) | = | \((a)\cdot(-a+1)\cdot(-2a+1)\cdot(3)\cdot(-2a+3)\cdot(2a+1)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 30492 \) | = | \(2\cdot2\cdot7\cdot9\cdot11\cdot11\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-107712a-1584$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-107712a-1584)\) | = | \((a)^{4}\cdot(-a+1)^{4}\cdot(-2a+1)\cdot(3)^{2}\cdot(-2a+3)\cdot(2a+1)^{4}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 23376874752 \) | = | \(2^{4}\cdot2^{4}\cdot7\cdot9^{2}\cdot11\cdot11^{4}\) |
|
| |||||
| j-invariant: | $j$ | = | \( -\frac{572783983993}{3689532} a - \frac{3616573017143}{4919376} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.18359366116541129774940341895678150361 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.367187322330822595498806837913563007220 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 2.4135882504783076628478180660436924356 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 64 \) = \(2^{2}\cdot2\cdot1\cdot2\cdot1\cdot2^{2}\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 5.3594697472645649245897218206526937466 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}5.359469747 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.413588 \cdot 0.367187 \cdot 64 } { {2^2 \cdot 2.645751} } \\ & \approx 5.359469747 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 6 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((a)\) | \(2\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
| \((-a+1)\) | \(2\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
| \((-2a+1)\) | \(7\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
| \((3)\) | \(9\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
| \((-2a+3)\) | \(11\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
| \((2a+1)\) | \(11\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
30492.5-k
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.