Properties

Label 2.0.7.1-30492.5-l2
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 30492 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(204a-235\right){x}-768a+1241\)
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([0,0]),K([-235,204]),K([1241,-768])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([0,0]),Polrev([-235,204]),Polrev([1241,-768])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,-1],K![0,0],K![-235,204],K![1241,-768]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-132a+66)\) = \((a)\cdot(-a+1)\cdot(-2a+1)\cdot(3)\cdot(-2a+3)\cdot(2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 30492 \) = \(2\cdot2\cdot7\cdot9\cdot11\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((761587596a-1831233096)\) = \((a)^{7}\cdot(-a+1)^{2}\cdot(-2a+1)^{8}\cdot(3)^{4}\cdot(-2a+3)\cdot(2a+1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3118801573349586432 \) = \(2^{7}\cdot2^{2}\cdot7^{8}\cdot9^{4}\cdot11\cdot11^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{8795793561707}{17355558528} a + \frac{476155147157027}{364466729088} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(8 a - 12 : 24 a - 57 : 1\right)$
Height \(0.042663558008346634150308783969725095096\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a + \frac{15}{4} : -\frac{1}{2} a - \frac{15}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.042663558008346634150308783969725095096 \)
Period: \( 0.39310673872112940846852014980252442079 \)
Tamagawa product: \( 896 \)  =  \(7\cdot2\cdot2^{3}\cdot2\cdot1\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 5.6797150753978486838779200993054198895 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)
\((-a+1)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-2a+1)\) \(7\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((3)\) \(9\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((-2a+3)\) \(11\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((2a+1)\) \(11\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 30492.5-l consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.