Learn more about

Refine search


Results (1-50 of at least 1000)

Next
Conrey label Orbit label Modulus Conductor Order Parity Primitive
\(\chi_{ 29 }(7, \cdot)\)  $\vdots$  \(\chi_{ 29 }(25, \cdot)\) 29.d $29$ $29$ $7$ even
\(\chi_{ 43 }(4, \cdot)\)  $\vdots$  \(\chi_{ 43 }(41, \cdot)\) 43.e $43$ $43$ $7$ even
\(\chi_{ 49 }(8, \cdot)\)  $\vdots$  \(\chi_{ 49 }(43, \cdot)\) 49.e $49$ $49$ $7$ even
\(\chi_{ 58 }(7, \cdot)\)  $\vdots$  \(\chi_{ 58 }(53, \cdot)\) 58.d $58$ $29$ $7$ even
\(\chi_{ 71 }(20, \cdot)\)  $\vdots$  \(\chi_{ 71 }(48, \cdot)\) 71.d $71$ $71$ $7$ even
\(\chi_{ 86 }(11, \cdot)\)  $\vdots$  \(\chi_{ 86 }(59, \cdot)\) 86.e $86$ $43$ $7$ even
\(\chi_{ 87 }(7, \cdot)\)  $\vdots$  \(\chi_{ 87 }(82, \cdot)\) 87.g $87$ $29$ $7$ even
\(\chi_{ 98 }(15, \cdot)\)  $\vdots$  \(\chi_{ 98 }(85, \cdot)\) 98.e $98$ $49$ $7$ even
\(\chi_{ 113 }(16, \cdot)\)  $\vdots$  \(\chi_{ 113 }(109, \cdot)\) 113.d $113$ $113$ $7$ even
\(\chi_{ 116 }(25, \cdot)\)  $\vdots$  \(\chi_{ 116 }(81, \cdot)\) 116.g $116$ $29$ $7$ even
\(\chi_{ 127 }(2, \cdot)\)  $\vdots$  \(\chi_{ 127 }(64, \cdot)\) 127.e $127$ $127$ $7$ even
\(\chi_{ 129 }(4, \cdot)\)  $\vdots$  \(\chi_{ 129 }(127, \cdot)\) 129.i $129$ $43$ $7$ even
\(\chi_{ 142 }(37, \cdot)\)  $\vdots$  \(\chi_{ 142 }(119, \cdot)\) 142.d $142$ $71$ $7$ even
\(\chi_{ 145 }(16, \cdot)\)  $\vdots$  \(\chi_{ 145 }(141, \cdot)\) 145.k $145$ $29$ $7$ even
\(\chi_{ 147 }(22, \cdot)\)  $\vdots$  \(\chi_{ 147 }(127, \cdot)\) 147.i $147$ $49$ $7$ even
\(\chi_{ 172 }(21, \cdot)\)  $\vdots$  \(\chi_{ 172 }(145, \cdot)\) 172.i $172$ $43$ $7$ even
\(\chi_{ 174 }(7, \cdot)\)  $\vdots$  \(\chi_{ 174 }(169, \cdot)\) 174.g $174$ $29$ $7$ even
\(\chi_{ 196 }(29, \cdot)\)  $\vdots$  \(\chi_{ 196 }(169, \cdot)\) 196.i $196$ $49$ $7$ even
\(\chi_{ 197 }(36, \cdot)\)  $\vdots$  \(\chi_{ 197 }(191, \cdot)\) 197.d $197$ $197$ $7$ even
\(\chi_{ 203 }(36, \cdot)\)  $\vdots$  \(\chi_{ 203 }(197, \cdot)\) 203.k $203$ $29$ $7$ even
\(\chi_{ 211 }(58, \cdot)\)  $\vdots$  \(\chi_{ 211 }(199, \cdot)\) 211.f $211$ $211$ $7$ even
\(\chi_{ 213 }(37, \cdot)\)  $\vdots$  \(\chi_{ 213 }(190, \cdot)\) 213.f $213$ $71$ $7$ even
\(\chi_{ 215 }(11, \cdot)\)  $\vdots$  \(\chi_{ 215 }(176, \cdot)\) 215.k $215$ $43$ $7$ even
\(\chi_{ 226 }(49, \cdot)\)  $\vdots$  \(\chi_{ 226 }(219, \cdot)\) 226.d $226$ $113$ $7$ even
\(\chi_{ 232 }(25, \cdot)\)  $\vdots$  \(\chi_{ 232 }(169, \cdot)\) 232.m $232$ $29$ $7$ even
\(\chi_{ 239 }(10, \cdot)\)  $\vdots$  \(\chi_{ 239 }(201, \cdot)\) 239.c $239$ $239$ $7$ even
\(\chi_{ 245 }(36, \cdot)\)  $\vdots$  \(\chi_{ 245 }(211, \cdot)\) 245.k $245$ $49$ $7$ even
\(\chi_{ 254 }(129, \cdot)\)  $\vdots$  \(\chi_{ 254 }(191, \cdot)\) 254.e $254$ $127$ $7$ even
\(\chi_{ 258 }(97, \cdot)\)  $\vdots$  \(\chi_{ 258 }(193, \cdot)\) 258.i $258$ $43$ $7$ even
\(\chi_{ 261 }(82, \cdot)\)  $\vdots$  \(\chi_{ 261 }(226, \cdot)\) 261.k $261$ $29$ $7$ even
\(\chi_{ 281 }(59, \cdot)\)  $\vdots$  \(\chi_{ 281 }(249, \cdot)\) 281.e $281$ $281$ $7$ even
\(\chi_{ 284 }(37, \cdot)\)  $\vdots$  \(\chi_{ 284 }(261, \cdot)\) 284.f $284$ $71$ $7$ even
\(\chi_{ 290 }(81, \cdot)\)  $\vdots$  \(\chi_{ 290 }(281, \cdot)\) 290.k $290$ $29$ $7$ even
\(\chi_{ 294 }(43, \cdot)\)  $\vdots$  \(\chi_{ 294 }(253, \cdot)\) 294.i $294$ $49$ $7$ even
\(\chi_{ 301 }(64, \cdot)\)  $\vdots$  \(\chi_{ 301 }(274, \cdot)\) 301.u $301$ $43$ $7$ even
\(\chi_{ 319 }(23, \cdot)\)  $\vdots$  \(\chi_{ 319 }(210, \cdot)\) 319.h $319$ $29$ $7$ even
\(\chi_{ 337 }(8, \cdot)\)  $\vdots$  \(\chi_{ 337 }(295, \cdot)\) 337.f $337$ $337$ $7$ even
\(\chi_{ 339 }(16, \cdot)\)  $\vdots$  \(\chi_{ 339 }(256, \cdot)\) 339.g $339$ $113$ $7$ even
\(\chi_{ 343 }(50, \cdot)\)  $\vdots$  \(\chi_{ 343 }(295, \cdot)\) 343.e $343$ $49$ $7$ even
\(\chi_{ 344 }(41, \cdot)\)  $\vdots$  \(\chi_{ 344 }(305, \cdot)\) 344.q $344$ $43$ $7$ even
\(\chi_{ 348 }(25, \cdot)\)  $\vdots$  \(\chi_{ 348 }(313, \cdot)\) 348.m $348$ $29$ $7$ even
\(\chi_{ 355 }(91, \cdot)\)  $\vdots$  \(\chi_{ 355 }(321, \cdot)\) 355.h $355$ $71$ $7$ even
\(\chi_{ 377 }(53, \cdot)\)  $\vdots$  \(\chi_{ 377 }(339, \cdot)\) 377.o $377$ $29$ $7$ even
\(\chi_{ 379 }(86, \cdot)\)  $\vdots$  \(\chi_{ 379 }(195, \cdot)\) 379.e $379$ $379$ $7$ even
\(\chi_{ 381 }(4, \cdot)\)  $\vdots$  \(\chi_{ 381 }(286, \cdot)\) 381.i $381$ $127$ $7$ even
\(\chi_{ 387 }(64, \cdot)\)  $\vdots$  \(\chi_{ 387 }(379, \cdot)\) 387.u $387$ $43$ $7$ even
\(\chi_{ 392 }(57, \cdot)\)  $\vdots$  \(\chi_{ 392 }(337, \cdot)\) 392.q $392$ $49$ $7$ even
\(\chi_{ 394 }(191, \cdot)\)  $\vdots$  \(\chi_{ 394 }(375, \cdot)\) 394.d $394$ $197$ $7$ even
\(\chi_{ 406 }(141, \cdot)\)  $\vdots$  \(\chi_{ 406 }(393, \cdot)\) 406.k $406$ $29$ $7$ even
\(\chi_{ 421 }(33, \cdot)\)  $\vdots$  \(\chi_{ 421 }(385, \cdot)\) 421.g $421$ $421$ $7$ even
Next