sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(58, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([6]))
pari:[g,chi] = znchar(Mod(7,58))
\(\chi_{58}(7,\cdot)\)
\(\chi_{58}(23,\cdot)\)
\(\chi_{58}(25,\cdot)\)
\(\chi_{58}(45,\cdot)\)
\(\chi_{58}(49,\cdot)\)
\(\chi_{58}(53,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(31\) → \(e\left(\frac{3}{7}\right)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 58 }(7, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)