Properties

Label 9800.gi
Modulus $9800$
Conductor $9800$
Order $140$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9800, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([0,70,133,110])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(13,9800)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(9800\)
Conductor: \(9800\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(9\) \(11\) \(13\) \(17\) \(19\) \(23\) \(27\) \(29\) \(31\)
\(\chi_{9800}(13,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{9800}(237,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{9800}(517,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{9800}(573,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{9800}(797,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{9800}(853,\cdot)\) \(1\) \(1\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{9800}(1133,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{9800}(1413,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{9800}(1637,\cdot)\) \(1\) \(1\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{9800}(1917,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{9800}(1973,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{9800}(2197,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{9800}(2477,\cdot)\) \(1\) \(1\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{9800}(2533,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{9800}(2813,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{9800}(3317,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{9800}(3373,\cdot)\) \(1\) \(1\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{9800}(3597,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{9800}(3653,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{9800}(3877,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{9800}(3933,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{9800}(4437,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{9800}(4717,\cdot)\) \(1\) \(1\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{9800}(4773,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{9800}(5053,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{9800}(5277,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{9800}(5333,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{9800}(5613,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{9800}(5837,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{9800}(6117,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{53}{140}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{9800}(6397,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{3}{10}\right)\)