sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9800, base_ring=CyclotomicField(140))
M = H._module
chi = DirichletCharacter(H, M([0,70,21,30]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(2533,9800))
         
     
    
  
   | Modulus: |  \(9800\) |   |  
   | Conductor: |  \(9800\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(140\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{9800}(13,\cdot)\)
  \(\chi_{9800}(237,\cdot)\)
  \(\chi_{9800}(517,\cdot)\)
  \(\chi_{9800}(573,\cdot)\)
  \(\chi_{9800}(797,\cdot)\)
  \(\chi_{9800}(853,\cdot)\)
  \(\chi_{9800}(1133,\cdot)\)
  \(\chi_{9800}(1413,\cdot)\)
  \(\chi_{9800}(1637,\cdot)\)
  \(\chi_{9800}(1917,\cdot)\)
  \(\chi_{9800}(1973,\cdot)\)
  \(\chi_{9800}(2197,\cdot)\)
  \(\chi_{9800}(2477,\cdot)\)
  \(\chi_{9800}(2533,\cdot)\)
  \(\chi_{9800}(2813,\cdot)\)
  \(\chi_{9800}(3317,\cdot)\)
  \(\chi_{9800}(3373,\cdot)\)
  \(\chi_{9800}(3597,\cdot)\)
  \(\chi_{9800}(3653,\cdot)\)
  \(\chi_{9800}(3877,\cdot)\)
  \(\chi_{9800}(3933,\cdot)\)
  \(\chi_{9800}(4437,\cdot)\)
  \(\chi_{9800}(4717,\cdot)\)
  \(\chi_{9800}(4773,\cdot)\)
  \(\chi_{9800}(5053,\cdot)\)
  \(\chi_{9800}(5277,\cdot)\)
  \(\chi_{9800}(5333,\cdot)\)
  \(\chi_{9800}(5613,\cdot)\)
  \(\chi_{9800}(5837,\cdot)\)
  \(\chi_{9800}(6117,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((7351,4901,1177,5001)\) → \((1,-1,e\left(\frac{3}{20}\right),e\left(\frac{3}{14}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |       
    
    
      | \( \chi_{ 9800 }(2533, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{107}{140}\right)\) | \(e\left(\frac{37}{70}\right)\) | \(e\left(\frac{33}{70}\right)\) | \(e\left(\frac{59}{140}\right)\) | \(e\left(\frac{43}{140}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{111}{140}\right)\) | \(e\left(\frac{41}{140}\right)\) | \(e\left(\frac{23}{35}\right)\) | \(e\left(\frac{7}{10}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)