sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9800, base_ring=CyclotomicField(140))
M = H._module
chi = DirichletCharacter(H, M([0,70,21,50]))
pari:[g,chi] = znchar(Mod(5333,9800))
| Modulus: | \(9800\) | |
| Conductor: | \(9800\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(140\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{9800}(13,\cdot)\)
\(\chi_{9800}(237,\cdot)\)
\(\chi_{9800}(517,\cdot)\)
\(\chi_{9800}(573,\cdot)\)
\(\chi_{9800}(797,\cdot)\)
\(\chi_{9800}(853,\cdot)\)
\(\chi_{9800}(1133,\cdot)\)
\(\chi_{9800}(1413,\cdot)\)
\(\chi_{9800}(1637,\cdot)\)
\(\chi_{9800}(1917,\cdot)\)
\(\chi_{9800}(1973,\cdot)\)
\(\chi_{9800}(2197,\cdot)\)
\(\chi_{9800}(2477,\cdot)\)
\(\chi_{9800}(2533,\cdot)\)
\(\chi_{9800}(2813,\cdot)\)
\(\chi_{9800}(3317,\cdot)\)
\(\chi_{9800}(3373,\cdot)\)
\(\chi_{9800}(3597,\cdot)\)
\(\chi_{9800}(3653,\cdot)\)
\(\chi_{9800}(3877,\cdot)\)
\(\chi_{9800}(3933,\cdot)\)
\(\chi_{9800}(4437,\cdot)\)
\(\chi_{9800}(4717,\cdot)\)
\(\chi_{9800}(4773,\cdot)\)
\(\chi_{9800}(5053,\cdot)\)
\(\chi_{9800}(5277,\cdot)\)
\(\chi_{9800}(5333,\cdot)\)
\(\chi_{9800}(5613,\cdot)\)
\(\chi_{9800}(5837,\cdot)\)
\(\chi_{9800}(6117,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7351,4901,1177,5001)\) → \((1,-1,e\left(\frac{3}{20}\right),e\left(\frac{5}{14}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 9800 }(5333, a) \) |
\(1\) | \(1\) | \(e\left(\frac{127}{140}\right)\) | \(e\left(\frac{57}{70}\right)\) | \(e\left(\frac{13}{70}\right)\) | \(e\left(\frac{19}{140}\right)\) | \(e\left(\frac{123}{140}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{31}{140}\right)\) | \(e\left(\frac{101}{140}\right)\) | \(e\left(\frac{8}{35}\right)\) | \(e\left(\frac{7}{10}\right)\) |
sage:chi.jacobi_sum(n)