Properties

Label 9800.5333
Modulus $9800$
Conductor $9800$
Order $140$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9800, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([0,70,21,50]))
 
Copy content pari:[g,chi] = znchar(Mod(5333,9800))
 

Basic properties

Modulus: \(9800\)
Conductor: \(9800\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9800.gi

\(\chi_{9800}(13,\cdot)\) \(\chi_{9800}(237,\cdot)\) \(\chi_{9800}(517,\cdot)\) \(\chi_{9800}(573,\cdot)\) \(\chi_{9800}(797,\cdot)\) \(\chi_{9800}(853,\cdot)\) \(\chi_{9800}(1133,\cdot)\) \(\chi_{9800}(1413,\cdot)\) \(\chi_{9800}(1637,\cdot)\) \(\chi_{9800}(1917,\cdot)\) \(\chi_{9800}(1973,\cdot)\) \(\chi_{9800}(2197,\cdot)\) \(\chi_{9800}(2477,\cdot)\) \(\chi_{9800}(2533,\cdot)\) \(\chi_{9800}(2813,\cdot)\) \(\chi_{9800}(3317,\cdot)\) \(\chi_{9800}(3373,\cdot)\) \(\chi_{9800}(3597,\cdot)\) \(\chi_{9800}(3653,\cdot)\) \(\chi_{9800}(3877,\cdot)\) \(\chi_{9800}(3933,\cdot)\) \(\chi_{9800}(4437,\cdot)\) \(\chi_{9800}(4717,\cdot)\) \(\chi_{9800}(4773,\cdot)\) \(\chi_{9800}(5053,\cdot)\) \(\chi_{9800}(5277,\cdot)\) \(\chi_{9800}(5333,\cdot)\) \(\chi_{9800}(5613,\cdot)\) \(\chi_{9800}(5837,\cdot)\) \(\chi_{9800}(6117,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

\((7351,4901,1177,5001)\) → \((1,-1,e\left(\frac{3}{20}\right),e\left(\frac{5}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 9800 }(5333, a) \) \(1\)\(1\)\(e\left(\frac{127}{140}\right)\)\(e\left(\frac{57}{70}\right)\)\(e\left(\frac{13}{70}\right)\)\(e\left(\frac{19}{140}\right)\)\(e\left(\frac{123}{140}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{31}{140}\right)\)\(e\left(\frac{101}{140}\right)\)\(e\left(\frac{8}{35}\right)\)\(e\left(\frac{7}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9800 }(5333,a) \;\) at \(\;a = \) e.g. 2