Properties

Label 925.bo
Modulus $925$
Conductor $185$
Order $36$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([18,29])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(24,925)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(925\)
Conductor: \(185\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 185.ba
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.0.29411719834995153896864925426307140281034671856927417346954345703125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(13\)
\(\chi_{925}(24,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(-i\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{925}(124,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(i\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{925}(224,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(-i\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{925}(274,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(-i\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{36}\right)\)
\(\chi_{925}(424,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(i\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{925}(449,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(i\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{925}(499,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(-i\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{925}(574,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(i\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{925}(624,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(-i\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{925}(649,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(-i\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{925}(799,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(i\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{35}{36}\right)\)
\(\chi_{925}(849,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(i\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{36}\right)\)